UNIT 7 STUDY GUIDE

TOPIC #1: DISTANCE, MIDPOINT AND SLOPE

	DISTANCE	SLOPE	MIDPOINT
FORMULA	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$	$M.P. = \left(\frac{(x_1 + x_2)}{2}, \frac{(y_1 + y_2)}{2}\right)$
KEY	CONGRUENT	• PARALLEL (same slope)	• BISECT
WORDS	• EQUAL	 PERPENDICULAR (negative reciprocal slope) RIGHT ANGLES (opposite reciprocal slopes) 	

MORE ON SLOPE:

Solving for the <u>slope</u>: (-4, 3), B (-1,-7) Lines with Positive, Negative, Zero, and Undefined Slopes $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7 - (3)}{-1 - (-4)} = \frac{-7 - 3}{-1 + 4} = \frac{-10}{3}$ Undefined Slope Positive Slope Negative Slope Zero Slope **PARALLEL** lines have **EQUAL** slopes. • PERPENDICULAR (Normal) lines have • **NEGATIVE RECIPROCAL SLOPES.** The line goes "up The line goes The line is The line is HORIZONTAL lines have ZERO/NO • hill" as you go "down hill" as horizontal. vertical. from left to right. you go from left slope (y = #)rise = 0risem = m = to right. runrun = 0**VERTICAL** lines have **UNDEFINED** slopes (x = #)• **TOPIC #2: DIRECTED LINE SEGMENTS** *In a directed line segment, ORDER MATTERS!*

$$(x_1 + k(x_2 - x_1), y_1 + k(y_2 - y_1))$$

BREAKDOWN		EXAMPLE	
(x_1, y_1) The initial (first) point		Find the point on the directed segment from (-4, 5) to (12, 13) that divides it in the ratio of 1:3.	
k	first number of ratio sum of ratio	$(-4+\left(\frac{1}{4}\right)(124), (5+\left(\frac{1}{4}\right)(13-5))$	
x ₂ , y ₂)	The second (final) point	(-4+4, 5+2) (0,7)	

TOPIC #3: EQUATION OF A LINE

SLOPE-INTERCEPT FORM	POINT-SLOPE FORM
y = mx + b m = Slope b = Y-Intercept	$y - y_1 = m(x - x_1)$ $m = \text{Slope}$ $(x_1, y_1) = \text{Point on the line}$

STEPS FOR WRITING AN EQUATION OF A LINE IN POINT SLOPE FORM WHEN GIVEN THE SLOPE & ONE POINT	Example: A line having a slope of $-\frac{4}{3}$ and passes through the
1. Substitute the given point (x, y) and (slope) <i>m</i> into	point (3,-7). Write the equation of this line in point-slope form .
$y - y_1 = m(x - x_1)$	y = y = m(r - r)
2. Write the equation in terms of $y - y_1 = m(x - x_1)$	$m = -\frac{4}{3}$ $y - y_1 - m(x - x_1)$ 4
3. Check using the calculator or plug the points	$x=3$ $y-7=-\frac{1}{3}(x-3)$
	$y = -7$ $y + 7 = -\frac{4}{2}(x-3)$
	3
STERS FOR WRITING AN FOUNTION OF A LINE IN POINT	Example: Write a linear equation given the two points (1.2)
STEPS FOR WRITING AN EQUATION OF A LINE IN FOINT	<u>example</u> . Write a linear equation given the two points (1,5)
SLOPE FORM WHEN GIVEN TWO POINTS	and (8,5) in point slope form .
SLOPE FORM WHEN GIVEN TWO POINTS 1. Determine the slope.	and (8,5) in <u>point slope form</u> . $\frac{\Delta y}{\Delta y} = \frac{y_2 - y_1}{y_2 - y_1} = \frac{5 - 3}{2} = \frac{2}{2}$
SLOPE FORM WHEN GIVEN TWO POINTS 1. Determine the slope. 2. Choose a given point.	and (8,5) in <u>point slope form</u> . 1. $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{8 - 1} = \frac{2}{7}$
 SLOPE FORM WHEN GIVEN TWO POINTS Determine the slope. Choose a given point. Substitute the given point (x, y) and (slope) m into 	and (8,5) in point slope form . 1. $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{8 - 1} = \frac{2}{7}$ 2. Point (1,3)
 SLOPE FORM WHEN GIVEN TWO POINTS Determine the slope. Choose a given point. Substitute the given point (x, y) and (slope) m into y - y₁ = m(x - x₁) 	and (8,5) in point slope form . 1. $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{8 - 1} = \frac{2}{7}$ 2. Point (1,3)
 SLOPE FORM WHEN GIVEN TWO POINTS Determine the slope. Choose a given point. Substitute the given point (x, y) and (slope) m into y - y₁ = m(x - x₁) Write the equation in terms of y - y₁ = m(x - x₁) 	and (8,5) in point slope form . 1. $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{8 - 1} = \frac{2}{7}$ 2. Point (1,3) $y - y_1 = m(x - x_1)$
 SLOPE FORM WHEN GIVEN TWO POINTS Determine the slope. Choose a given point. Substitute the given point (x, y) and (slope) m into y - y₁ = m(x - x₁) Write the equation in terms of y - y₁ = m(x - x₁) Check using the calculator. 	and (8,5) in <u>point slope form</u> . 1. $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{8 - 1} = \frac{2}{7}$ 2. Point (1,3) $y - y_1 = m(x - x_1)$ 3. $y - 3 = \frac{2}{7}(x - 1)$

STEPS FOR WRITING AN EQUATION OF A PERPENDICULAR BISECTOR

<u>Example</u>: Write an equation represents the perpendicular bisector of \overline{AB} whose endpoints are A(8, 2) and B(0, 6).

- 1. Determine the slope.
- 2. Determine the midpoint.
- 3. Substitute the midpoint (x, y) and the perpendicular

slope) *m* into $y - y_1 = m(x - x_1)$

1.
$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{0 - 8} = -\frac{4}{8} = -\frac{1}{2} \to \perp m = 2$$

2.
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \rightarrow \left(\frac{8 + 0}{2}, \frac{2 + 2}{2}\right) \rightarrow (4, 4)$$

3.
$$y - y_1 = m(x - x_1)$$
$$y - 4 = 2(x - 4)$$

Answer: y-4 = 2(x-4)y = 2x-4

TOPIC #4: COORDINATE PROOFS

- To prove **ISOSCELES TRIANGLE**-use distance formula **THREE** times to show only **TWO** sides are congruent.
- To prove **EQUILATERAL TRIANGLE**-use distance formula **THREE** times to show all **THREE** sides are congruent.
- To prove **<u>SCALENE TRIANGLE</u>**-use distance formula **THREE** times to show **NO** sides are congruent.

Classify $\triangle ABC$ as scalene, isosceles, or equilateral.

$$AB = \sqrt{(7-4)^2 + (3-6)^2} = \sqrt{18} = 3\sqrt{2}$$
$$BC = \sqrt{(2-7)^2 + (1-3)^2} = \sqrt{29}$$
$$AC = \sqrt{(2-4)^2 + (1-6)^2} = \sqrt{29}$$

ANSWER

Because BC = AC, $\triangle ABC$ is isosceles.

 To prove <u>RIGHT TRIANGLE</u>-use distance formula THREE times then use PYTHAGOREAN THEOREM to show that it is being satisfied.

$$a^{2} + b^{2} = c^{3}$$

 $(\sqrt{20})^{2} + (\sqrt{20})^{2} = (\sqrt{40})^{3}$
 $20 + 20 = 40$
 $40 = 40/$

•	To prove <u>RHOMBUS</u> - use distance formula FOUR times to prove that all FOUR sides are congruent.	
•	To prove <u>SQUARE</u> - use distance formula SIX times to prove that all FOUR sides are congruent <i>and</i> DIAGONALS are congruent.	
•	To prove TRAPEZOID - use slope formula TWO times to prove that at least one pair of OPPOSITE sides are PARALLEL (same slope).	
•	To prove <u>ISOSCELES TRAPEZOID</u> - use slope formula TWO times to prove that at least one pair of OPPOSITE sides are PARALLEL (same slope). Then, use distance formula TWO times to prove that the non-parallel sides are CONGRUENT.	