UNIT 7 STUDY GUIDE

TOPIC \#1: DISTANCE, MIDPOINT AND SLOPE

	DISTANCE	SLOPE	MIDPOINT
FORMULA	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	$\operatorname{m=\frac {(y_{2}-y_{1})}{(x_{2}-x_{1})}}$	M.P. $=\left(\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}\right)$
KEY WORDS	\bullet CONGRUENT	EQUALPARALLEL (same slope) PERPENDICULAR (negative reciprocal slope) RIGHT ANGLES (opposite reciprocal slopes)	\bullet BISECT

MORE ON SLOPE:

Solving for the slope: $(-4,3), B(-1,-7)$
Lines with Positive, Negative, Zero, and Undefined Slopes $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-7-(3)}{-1-(-4)}=\frac{-7-3}{-1+4}=\frac{-10}{3}$

- PARALLEL lines have EQUAL slopes.
- PERPENDICULAR (Normal) lines have NEGATIVE RECIPROCAL SLOPES.
- HORIZONTAL lines have ZERO/NO slope ($y=\#$)

- VERTICAL lines have UNDEFINED slopes $(x=\#)$

TOPIC \#2: DIRECTED LINE SEGMENTS
In a directed line segment, ORDER MATTERS!

$$
\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right)
$$

BREAKDOWN		EXAMPLE
$\left(x_{1}, y_{1}\right)$	The initial (first) point	Find the point on the directed segment from $(-4,5)$ to $(12,13)$ that divides it in the ratio of 1:3.
k	$\frac{\text { first number of ratio }}{\text { sum of ratio }}$	$\left(-4+\left(\frac{1}{4}\right)(12--4),\left(5+\left(\frac{1}{4}\right)(13-5)\right)\right.$
$\left.x_{2}, y_{2}\right)$	The second (final) point	$(-4+4,5+2)$
		$(0,7)$

SLOPE-INTERCEPT FORM	POINT-SLOPE FORM
$y=m x+b$	$y-y_{1}=m\left(x-x_{1}\right)$
$m=$ Slope	$m=$ Slope
$b=$ Y-Intercept	$\left(x_{1}, y_{1}\right)=$ Point on the line

STEPS FOR WRITING AN EQUATION OF A LINE IN POINT SLOPE FORM WHEN GIVEN THE SLOPE \& ONE POINT

1. Substitute the given point (x, y) and (slope) m into

$$
y \quad y_{1}=m\left(\begin{array}{ll}
x & x_{1}
\end{array}\right)
$$

2. Write the equation in terms of $y \quad y_{1}=m\left(\begin{array}{ll}x & x_{1}\end{array}\right)$
3. Check using the calculator or plug the points

STEPS FOR WRITING AN EQUATION OF A LINE IN POINT SLOPE FORM WHEN GIVEN TWO POINTS

1. Determine the slope.
2. Choose a given point.
3. Substitute the given point (x, y) and (slope) m into
$y \quad y_{1}=m\left(\begin{array}{ll}x & x_{1}\end{array}\right)$
4. Write the equation in terms of $y \quad y_{1}=m\left(\begin{array}{ll}x & x_{1}\end{array}\right)$
5. Check using the calculator.

STEPS FOR WRITING AN EQUATION OF A PERPENDICULAR

 BISECTOR1. Determine the slope.
2. Determine the midpoint.
3. Substitute the midpoint (x, y) and the perpendicular slope) m into $y \quad y_{1}=m\left(\begin{array}{ll}x & x_{1}\end{array}\right)$

Example: A line having a slope of $\frac{4}{3}$ and passes through the point $(3,-7)$. Write the equation of this line in point-slope form.

$$
\begin{aligned}
& m=-\frac{4}{3} \\
& x=3 \\
& y=-7
\end{aligned}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--7=-\frac{4}{3}(x-3)
$$

$$
y+7=-\frac{4}{3}(x-3)
$$

Example: Write a linear equation given the two points (1,3) and $(8,5)$ in point slope form.

1. $\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-3}{8-1}=\frac{2}{7}$
2. Point $(1,3)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

3. $y-3=\frac{2}{7}(x-1)$

Example: Write an equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$.

1. $\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-2}{0-8}=-\frac{4}{8}=-\frac{1}{2} \rightarrow \perp m=2$
2. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \rightarrow\left(\frac{8+0}{2}, \frac{2+2}{2}\right) \rightarrow$ $(4,4)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-4=2(x-4)$
$y-4=2(x-4)$

$$
\text { Answer: } \begin{aligned}
& y-4=2(x-4) \\
& y=2 x-4
\end{aligned}
$$

TOPIC \#4: COORDINATE PROOFS

- To prove ISOSCELES TRIANGLE-use distance formula THREE times to show only TWO sides are congruent.
- To prove EQUILATERAL TRIANGLE-use distance formula THREE times to show all THREE sides are congruent.
- To prove SCALENE TRIANGLE-use distance formula THREE times to show NO sides are congruent.

Classify $\triangle A B C$ as scalene, isosceles, or equilateral.

$$
\begin{aligned}
& A B=\sqrt{(7-4)^{2}+(3-6)^{2}}=\sqrt{18}=3 \sqrt{2} \\
& B C=\sqrt{(2-7)^{2}+(1-3)^{2}}=\sqrt{29} \\
& A C=\sqrt{(2-4)^{2}+(1-6)^{2}}=\sqrt{29}
\end{aligned}
$$

ANSWER

Because $B C=A C, \triangle A B C$ is isosceles.

- To prove RIGHT TRIANGLE-use distance formula THREE times then use PYTHAGOREAN THEOREM to show that it is being satisfied.

- To prove PARALLELORAM- use distance formula FOUR times to prove both pairs of OPPOSITE sides are congruent.

If $\overline{A D} \cong \overline{B C}$ and $\overline{A B} \cong \overline{D C}$,
then $A B C D$ is a Parallelogram

- To prove RECTANGLE- use distance formula SIX times to prove that both pairs of OPPOSITE sides are congruent and DIAGONALS are congruent.

- To prove RHOMBUS- use distance formula FOUR times to prove that all FOUR sides are congruent.

- To prove SQUARE- use distance formula SIX times to prove that all FOUR sides are congruent and DIAGONALS are congruent.

- To prove TRAPEZOID- use slope formula TWO times to prove that at least one pair of OPPOSITE sides are PARALLEL (same slope).
- To prove ISOSCELES TRAPEZOID- use slope formula TWO times to prove that at least one pair of OPPOSITE sides are PARALLEL (same slope). Then, use distance formula TWO times to prove that the non-parallel sides are CONGRUENT.

