NI	2	r	n	Δ	٠
1 1	a			С	٠

Date: _____

UNIT 7

LESSON 9

AIM: HOW DO PROVE PARALLELOGRAMS AND RECTANGLES USING COORDINATE GEOMETRY?

Do Now: Fill in the formulas for distance, slope and midpoint on the table below.

	DISTANCE	SLOPE	MIDPOINT
FORMULA			
КЕҮ			
WORDS			

FORMULA APPLICATIONS:

1. The coordinates of the vertices of parallelogram *CDEH* are C(-5,5), D(2,5), E(-1,-1), and H(-8,-1). What are the coordinates of *P*, the point of intersection of diagonals \overline{CE} and \overline{DH} ?

- 1) (-2,3)
- 2) (-2,2)
- 3) (-3,2)
- 4) (-3,-2)

2. Rectangle *KLMN* has vertices K(0, 4), L(4, 2), M(1, -4), and N(-3, -2). Determine and state the coordinates of the point of intersection of the diagonals.

3. The coordinates of the vertices of parallelogram *ABCD* are A(-3, 2), B(-2, -1), C(4, 1), and D(3, 4). The slopes of which line segments could be calculated to show that *ABCD* is a rectangle?

- 1) \overline{AB} and \overline{DC}
- 2) \overline{AB} and \overline{BC}
- 3) \overline{AD} and \overline{BC}
- 4) \overline{AC} and \overline{BD}

4. In the coordinate plane, the vertices of triangle PAT are P(-1, -6), A(-4, 5), and T(5, -2).

a) State the coordinates of *R* so that quadrilateral *PART* is a parallelogram.

b) Prove that quadrilateral *PART* is a parallelogram.

NOTES:

- To find a missing point in a parallelogram or rectangle, use the graph to repeat the ______ on opposite sides.
- To prove a quadrilateral is a parallelogram, we use the ______ formula ____ times to

show that _____

_____ but

5. In the coordinate plane, the vertices of $\triangle RST$ are R(6, -1), S(1, -4), and T(-5, 6).

a) Prove that $\triangle RST$ is a right triangle.

b) State the coordinates of point *P* such that quadrilateral *RSTP* is a rectangle.

c) Prove that your quadrilateral *RSTP* is a rectangle.

NOTES:

•	To prove a triangle is a right triangle, we use the	formula times and use	and use	
	those numbers to prove the Pythagorean theorem (). Where 'c' is the	
	number.			
•	• To prove a quadrilateral is a rectangle, we use the		formula times to show	
	that	and		

NOW YOU TRY ONE!

5. Ashanti is surveying for a new parking lot shaped like a parallelogram. She knows that three of the vertices of parallelogram *ABCD* are A(0, 0), B(5, 2), and C(6, 5).

a) Find the coordinates of point *D* and sketch parallelogram *ABCD* on the accompanying set of axes.

b) Justify mathematically that the figure you have drawn is a parallelogram.

Name: _____

LESSON 9 HOMEWORK

1. Parallelogram *ABCD* has coordinates A(1, 5), B(6, 3), C(3, -1), and D(-2, 1). What are the coordinates of *E*, the intersection of diagonals \overline{AC} and \overline{BD} ?

- 1) (2,2)
- 2) (4.5,1)
- 3) (3.5,2)
- 4) (-1,3)
- 2. The vertices of parallelogram *MATH* have coordinates M(-4, 2), A(-1, -3), T(9, 3).

a) Find the coordinates of point *H* and sketch parallelogram *ABCD* on the accompanying set of axes.

b) Prove that quadrilateral *MATH* is a rectangle.