Name: \qquad
UNIT 7
Date: \qquad
LESSON 9

AIM: HOW DO PROVE PARALLELOGRAMS AND RECTANGLES USING COORDINATE GEOMETRY?
Do Now: Fill in the formulas for distance, slope and midpoint on the table below.

	DISTANCE	SLOPE	MIDPOINT
FORMULA			
KEY WORDS			

FORMULA APPLICATIONS:

1. The coordinates of the vertices of parallelogram $C D E H$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals $\overline{C E}$ and $\overline{D H}$?
1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$
2. Rectangle $K L M N$ has vertices $K(0,4), L(4,2), M(1,-4)$, and $N(-3,-2)$. Determine and state the coordinates of the point of intersection of the diagonals.
3. The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?
1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$
4. In the coordinate plane, the vertices of triangle $P A T$ are $P(-1,-6)$, $A(-4,5)$, and $T(5,-2)$.
a) State the coordinates of R so that quadrilateral PART is a parallelogram.
b) Prove that quadrilateral PART is a parallelogram.

NOTES:

- To find a missing point in a parallelogram or rectangle, use the graph to repeat the \qquad on opposite sides.
- To prove a quadrilateral is a parallelogram, we use the \qquad formula \qquad times to show that \qquad but
\qquad -.

5. In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$.
a) Prove that $\triangle R S T$ is a right triangle.

b) State the coordinates of point P such that quadrilateral RSTP is a rectangle.
c) Prove that your quadrilateral RSTP is a rectangle.

NOTES:

- To prove a triangle is a right triangle, we use the \qquad formula \qquad times and use those numbers to prove the Pythagorean theorem (\qquad). Where ' c ' is the
\qquad number.
- To prove a quadrilateral is a rectangle, we use the \qquad formula \qquad times to show that \qquad and \qquad -

5. Ashanti is surveying for a new parking lot shaped like a parallelogram. She knows that three of the vertices of parallelogram $A B C D$ are $A(0,0), B(5,2)$, and $C(6,5)$.
a) Find the coordinates of point D and sketch parallelogram $A B C D$ on the accompanying set of axes.
b) Justify mathematically that the figure you have drawn is a parallelogram.

Name: \qquad

UNIT 7

\qquad

1. Parallelogram $A B C D$ has coordinates $A(1,5), B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?
1) $(2,2)$
2) $(4.5,1)$
3) $(3.5,2)$
4) $(-1,3)$
2. The vertices of parallelogram $M A T H$ have coordinates $M(-4,2), A(-1,-3), T(9,3)$.
a) Find the coordinates of point H and sketch parallelogram $A B C D$ on the accompanying set of axes.
b) Prove that quadrilateral $M A T H$ is a rectangle.

