\qquad Date: \qquad

UNIT 7

LESSON 5

AIM: HOW DO WE DIVIDE SEGMENTS PROPORTIONALLY?

Do Now: Given m is the midpoint of line segment $\overline{A B}$:
a) What ratio does M split the segment into?
b) How many total parts are in the segment?
c) What fraction of the way from A to B is the midpoint M ?

1) Partition the following segments, given the ratio

3:2 of the directed line segment $A B$ (initial point A). How many total equal parts are there? \qquad
2) Partition the following segments, given the ratio

3:2 of the directed line segment $A B$ (initial point B). How many total equal parts are there? \qquad
3) Segment $A B$ is split into four equal parts. Starting closest to A, three points Q, P, and R respectively split the segment.

A.) State the partition ratio of: A
B.) What fraction of the way along $A B$ is:
a. $\mathrm{AQ}: \mathrm{QB}$
a. AQ
b. $\mathrm{AP}: \mathrm{PB}$
b. $A P$
c. $A R: R B$
c. $A R$
C.) Can you find the relationship between the partition ratio and the fraction?

- A directed line segment has both \qquad and \qquad . In other words, the order of the letters matters!
- Partition Ratio: \qquad
\qquad
- Fraction:
- Dilation Scale Factor:

Example 3: Determine the ratio and fraction of the way of the directed line segment $\overline{A B}$ when partitioned by point P . (Hint: \mathbf{A} is the initial point)

a) \qquad : \qquad Fraction? \qquad
b) \qquad
\qquad Fraction? \qquad c) \qquad : \qquad Fraction?

FINDING SPECIFIC POINTS USING DIRECTED LINE SEGMENTS

GRAPHICALLY:

Example 4: Directed line segment $K L$ has endpoints whose coordinates are $K(-5,-4)$ and $L(5,1)$. Determine the coordinates of point M that divides the segment in the ratio 3:2.

1. Graph the Line(if not already done)
2. Find slope and mark all points using slope
3. Find the point J that will partition the directed segment into 3:2 ratio (starting from K)

NYTO (Now You Try One): Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 .

DIRECTED LINE SEGMENT FORMULA!

$$
\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right)
$$

Where:

$\left(x_{1}, y_{1}\right)$	
k	
$\left(x_{2}, y_{2}\right)$	-

Example 5: The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$.

NYTO (Now You Try One): Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates (4,2), and B has coordinates (22,2), determine and state the coordinates of P.

PARTNER PRACTICE:

1) The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.
2) Point Q is on $\overline{M N}$ such that $M Q Q N=2: 3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are
3) $(5,1)$
4) $(5,0)$
5) $(6,-1)$
6) $(6,0)$
7) What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?
8) $(-3,-3)$
9) $(-1,-2)$
10) $\left(0,-\frac{3}{2}\right)$
11) $(1,-1)$
4. Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio $1: 5$. What are the coordinates of point P ?
1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4,-\frac{1}{2}\right)$

Name: \qquad Date: \qquad
UNIT 7
LESSON 5
HOMEWORK
5. Given the diagram below with initial point A.
$A P: P B=3: 2$

TRUE OR FALSE
6. Given the diagram below with initial point A.
$A P: A B=2: 5$

TRUE OR FALSE

7. $\overline{A B}$ is drawn from $A(0,10)$ to $B(-7,-4)$. Find point C that partitions $\overline{A B}$ in the ratio 5:2.

8. Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 .

