### **LESSON 3**

### AIM: HOW DO WE WRITE THE EQUATIONS OF LINES IN SLOPE-INTERCEPT FORM?

Do Now: For each of the following equations, rearrange into y = mx + b form and identify the slope and y-intercept of the line.

(a) 
$$y + 2x = 7$$

(b) 
$$2x + 3y = 12$$

(c) 
$$x - 6y = 7$$

# **Equation of a Line in Slope-Intercept Form**

| What is the relationship?             |                                       | What is the relationship?             |                                        |
|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| <b>Line a:</b> $y = \frac{1}{2}x + 4$ | <b>Line b:</b> $y = \frac{1}{2}x - 5$ | <b>Line c:</b> $y = \frac{2}{3}x + 1$ | <b>Line d:</b> $y = -\frac{3}{2}x - 3$ |
| Line a and line b are                 | because                               | Line c and line d are                 | because                                |
|                                       |                                       |                                       |                                        |

**Example 1:** What is an equation of a line that is perpendicular to the line whose equation is 2y + 3x = 1?

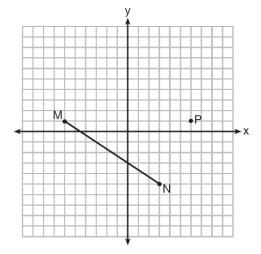
1) 
$$y = \frac{2}{3}x + \frac{5}{2}$$

**2)** 
$$y = \frac{3}{2}x + 2$$

3) 
$$y = -\frac{2}{3}x + 1$$

4) 
$$y = -\frac{3}{2}x + \frac{1}{2}$$

**Example 2:** Given  $\overline{MV}$  shown below, with M(-6,1) and N(3,-5), what is an equation of the line that passes


through point P(6, 1) and is parallel to  $\overline{MN}$ ?



**2)** 
$$y = -\frac{2}{3}x - 3$$

3) 
$$y = \frac{3}{2}x + 7$$

4) 
$$y = \frac{3}{2}x - 8$$



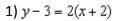
## Point – Slope form of a Linear Equation

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m \left( x - x_1 \right)$$

**Example 3:** Which equation represents a line parallel to the line whose equation is -2x + 3y = -4?

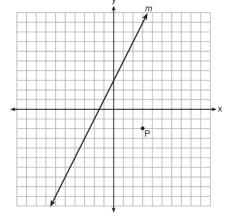
1) 
$$y-3=-\frac{3}{2}(x-1)$$


2) 
$$y-3=\frac{2}{3}(x-1)$$

3) 
$$y = \frac{3}{2}x - 4$$

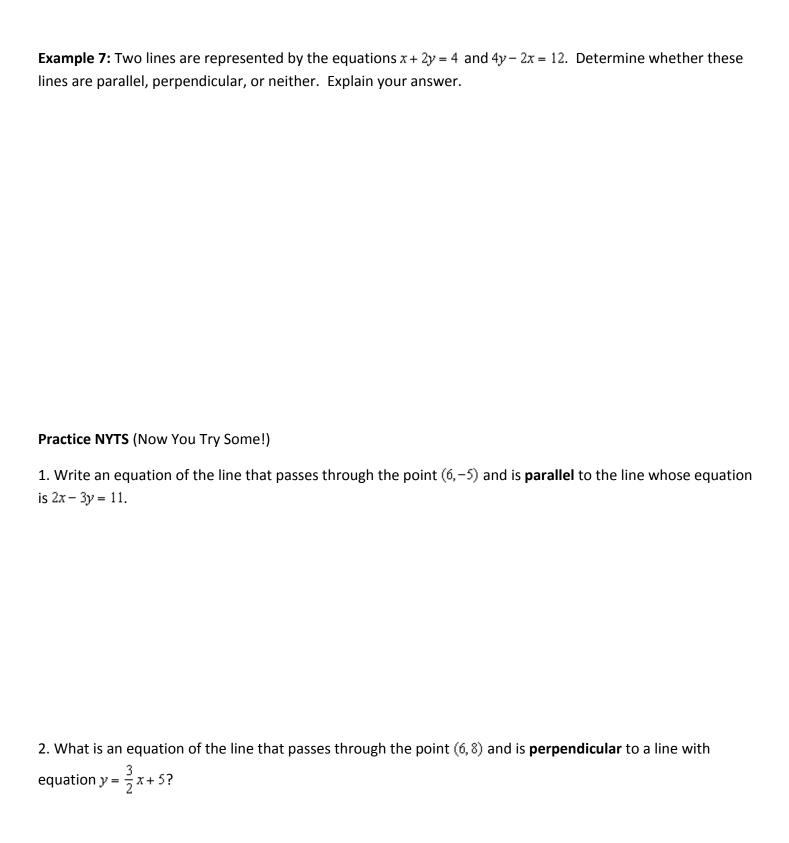
4) 
$$y = -\frac{2}{3}x + 1$$

**Example 4:** Line m and point P are shown in the graph below. Which equation represents the line passing


through *P* and parallel to line *m*?



2) 
$$y + 2 = 2(x - 3)$$


3) 
$$y-3=-\frac{1}{2}(x+2)$$

4) 
$$y + 2 = -\frac{1}{2}(x - 3)$$



**Example 5:** Write an equation of a line that is **perpendicular** to the line  $y = \frac{2}{3}x + 5$  and that passes through the point (0,4).

**Example 6:** Find an equation of the line passing through the point (5,4) and **parallel** to the line whose equation is 2x + y = 3.



3. Which equation represents a line that is **parallel** to the line whose equation is  $y = \frac{3}{2}x - 3$  and passes through the point (1, 2)?

1) 
$$y-1=\frac{3}{2}(x-2)$$

2) 
$$y-2=-\frac{2}{3}(x-1)$$

3) 
$$y-2=\frac{3}{2}(x-1)$$

4) 
$$y-1=-\frac{2}{3}(x-2)$$

4. What is an equation of the line that passes through the point (2,4) and is **perpendicular** to the line whose equation is 3y = 6x + 3?

**1)** 
$$y = -\frac{1}{2}x + 5$$

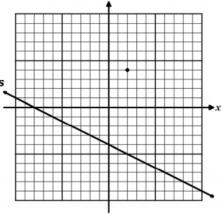
2) 
$$y = -\frac{1}{2}x + 4$$

3) 
$$y = 2x - 6$$

4) 
$$y = 2x$$

5. What is an equation of the line that passes through the point (-2, 3) and is parallel to the line whose equation is  $y = \frac{3}{2}x - 4$ ?

1) 
$$y = \frac{-2}{3}x$$


2) 
$$y = \frac{-2}{3}x + \frac{5}{3}$$

3) 
$$y = \frac{3}{2}x$$

4) 
$$y = \frac{3}{2}x + 6$$

### **LESSON 3 HOMEWORK**

1. On the grid below, the line, s, is graphed as well as the point (2, 4). Write the equation of a line parallel to line s that passes through the point (2,4).



2. What is the slope of a line perpendicular to the line whose equation is 3x - 7y + 14 = 0?

- 1)  $\frac{3}{7}$
- 2)  $-\frac{7}{3}$
- 3) 3
- 4)  $-\frac{1}{3}$

3. Find an equation of the line passing through the point (6,5) and **perpendicular** to the line whose equation is 2y + 3x = 6.

4. What is the equation of a line passing through the point (6, 1) and **parallel** to the line whose equation is 3x = 2y + 4?