Name:	Date:										
UNIT 7	LESSON 10										
AIM: HOW DO PROVE RHOMBI AND SQUAF	AIM: HOW DO PROVE RHOMBI AND SQUARES USING COORDINATE GEOMETRY?										
Denote The discounds of the sector $TEAAA$ intersect at $D(2, 1)$.	$\frac{1}{2}$										

Do now: The diagonals of rhombus *TEAM* intersect at P(2, 1). If the equation of the line that contains diagonal *TA* is y = -x + 3, what is the equation of a line that contains diagonal *EM*?

- 1) y = x 1
- 2) y = x 3
- 3) y = -x 1
- 4) y = -x 3

NOTES:

A rhombus is a parallelogram with ______ sides, and ______ diagonals.

A square is a parallelogram with ______ sides, _____ diagonals and ______ angles.

1) Parallelogram ABCD has coordinates A(0,7) and C(2,1). Which statement would prove that ABCD is a rhombus?

- 1) The midpoint of \overline{AC} is (1, 4).
- 2) The length of \overline{BD} is $\sqrt{40}$.
- ³⁾ The slope of \overline{BD} is $\frac{1}{3}$.
- 4) The slope of \overline{AB} is $\frac{1}{3}$.

2) The coordinates of two vertices of square ABCD are A(2, 1) and B(4, 4). Determine the slope of side \overline{BC} .

3) In square *GEOM*, the coordinates of *G* are (2, -2) and the coordinates of *O* are (-4, 2). Determine and state the coordinates of vertices *E* and *M*. [The use of the set of axes below is optional.]

4) Quadrilateral *NATS* has coordinates N(-4, -3), A(1, 2), T(8, 1), and S(3, -4). Prove quadrilateral *NATS* is a rhombus. [The use of the set of axes below is optional.]

5) The coordinates of the vertices of $\triangle ABC$ are A(1, 2), B(-5, 3), and C(-6, -3). Prove that $\triangle ABC$ is isosceles. State the coordinates of point *D* such that quadrilateral *ABCD* is a square. Prove that your quadrilateral *ABCD* is a square. [The use of the set of axes below is optional.]

Name: _____

UNIT 7

LESSON 10 HOMEWORK

1) The coordinates of quadrilateral *ABCD* are A(-1,-5), B(8,2), C(11,13), and D(2,6). Using coordinate geometry, prove that quadrilateral *ABCD* is a **rhombus**. [The use of the grid is optional.]

										\vdash
										⊢
										-
										-
_										\vdash
										⊢
										-
										\vdash

CONCLUSION:

2) In the diagram below, \overline{AC} has endpoints with coordinates A(-5, 2) and C(4, -10).

If B is a point on \overline{AC} and AB:BC = 1:2, what are the coordinates of B?

1)
$$(-2, -2)$$
 2) $\left(-\frac{1}{2}, -4\right)$ 3) $\left(0, -\frac{14}{3}\right)$ 4) $(1, -6)$

3) Which equation represents the perpendicular bisector of \overline{AB} whose endpoints are A(8, 2) and B(0, 6)? (HINT: 3 steps!)

- 1) y = 2x 4
- 2) $y = -\frac{1}{2}x + 2$

3)
$$y = -\frac{1}{2}x + 6$$

4)
$$y = 2x - 12$$