\qquad Date: \qquad

AIM: HOW DO PROVE RHOMBI AND SQUARES USING COORDINATE GEOMETRY?

Do now: The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$

NOTES:

- A rhombus is a parallelogram with \qquad sides, and \qquad diagonals.
- A square is a parallelogram with \qquad sides, \qquad diagonals and \qquad angles.

1) Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?
2) The midpoint of $\overline{A C}$ is $(1,4)$.
3) The length of $\overline{B D}$ is $\sqrt{40}$.
4) The slope of $\overline{B D}$ is $\frac{1}{3}$.
5) The slope of $\overline{A B}$ is $\frac{1}{3}$.
6) The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.
7) In square $G E O M$, the coordinates of G are $(2,-2)$ and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

8) Quadrilateral NATS has coordinates $N(-4,-3), A(1,2), T(8,1)$, and $S(3,-4)$. Prove quadrilateral NATS is a rhombus. [The use of the set of axes below is optional.]

\qquad
9) The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of point D such that quadrilateral $A B C D$ is a square. Prove that your quadrilateral $A B C D$ is a square. [The use of the set of axes below is optional.]

\qquad
\qquad

UNIT 7

LESSON 10 HOMEWORK

1) The coordinates of quadrilateral $A B C D$ are $A(-1,-5), B(8,2), C(11,13)$, and $D(2,6)$. Using coordinate geometry, prove that quadrilateral $A B C D$ is a rhombus. [The use of the grid is optional.]

CONCLUSION:

\qquad
2) In the diagram below, $\overline{A C}$ has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on $\overline{A C}$ and $A B: B C=1: 2$, what are the coordinates of B ?

1) $(-2,-2)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

5) Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$? (HINT: 3 steps!)
6) $y=2 x-4$
7) $y=-\frac{1}{2} x+2$
8) $y=-\frac{1}{2} x+6$
9) $y=2 x-12$
