Name: _____

Date: _____

UNIT 6

LESSON 8

AIM: WHAT ARE COFUNCTIONS?

Do Now: If two <u>complementary</u> angles are represented by 4x and 7x - 9, what is the value of x?

SINE AND COSINE OF COMPLEMENTARY ANGLES

If A and B are complementary angles,

$$sinA = cosB$$

 $cosA = sinB$

When $0^{\circ} < \theta < 90^{\circ}$, $sin(90^{\circ} - \theta) = cos\theta$ and $sin\theta = cos(90^{\circ} - \theta)$

Therefore, sine and cosine are called_

1. In right triangle DEF, where $m \angle D = 90^{\circ}$, which of the following statements is always true?		2. In right triangle ABC, where $m \angle B = 90^{\circ}$, which of the following statements is always true?
1) $\sin D = \cos F$ 2) $\tan E = \cos F$ 3) $\sin F = \cos E$ 4) $\tan D = \sin E$		1) $\sin A = \cos B$ 2) $\sin A = \cos C$ 3) $\tan A = \cos C$ 4) $\sin A = \tan B$

3. Each of the following diagrams and examples is a right triangle. Fill in the blanks based on the sine & cosine of angles that add to 90°

	Right Triangle ABC with $m \angle C = 90^{\circ}$.	Right Triangle DEF with $m \angle E = 90^{\circ}$.	κ L
\sin = \cos or	\sin = \cos or	\sin = \cos or	$sin_=cos_$ or
\sin = \cos	\sin = \cos	$\sin_{} = \cos_{}$	\sin = \cos

4. When instructed to find the length of \overline{HJ} in right triangle *HJG*, Jia wrote the equation $\sin 62^{\circ} = \frac{GJ}{20}$ while Dan

wrote $\cos 28^\circ = \frac{GJ}{20}$. Are both students' equations correct? Explain why.

6. Find the value of θ that will make the equation $\sin \theta = \cos 37^{\circ}$ true when $0^{\circ} < \theta < 90^{\circ}$. Explain your answer.

7. In a right triangle, $\sin(2x-15)^{\circ} = \cos(x-12)^{\circ}$. What is the value of x?

8. In a right triangle, $\sin(x+5)^{\circ} = \cos(4x+10)^{\circ}$. What is the value of x?

9. Find the value of *B* that will make the equation $\sin 62^\circ = \cos B$ true when $0^\circ < B < 90^\circ$. Explain your answer.

NOW YOU TRY SOME! For questions 1-6,	find values for θ	ϑ that make each statement true:

$1. \sin\theta = \cos 25^{\circ}$	2. $sin80^\circ = cos\theta$
3. $sin\theta = cos(\theta + 10)^{\circ}$	4. $sin(\theta - 45)^\circ = cos\theta$

Name:	Date:
UNIT 6	LESSON 8

HOMEWORK

1. In scalene triangle ABC shown in the diagram below, $m \angle A = 90^{\circ}$. Which equation is always true?

- 1) $\cos C = \cos B$
- 2) $\sin C = \sin B$
- 3) $\sin B = \cos C$
- 4) $\cos B = \sin A$

2. In a right triangle, sin $(5x + 15)^\circ = \cos (4x - 6)^\circ$. What is the value of x?

4. Find the value of *B* that will make the equation $\sin 89^\circ = \cos B$ true when $0^\circ < B < 90^\circ$. Explain your answer.

Review Question

5. As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 37-foot-tall screen is 11 feet off the ground. The projector sits on the ground at a horizontal distance of 43 feet from the screen. Determine and

state, to the *nearest tenth of a degree*, the measure of θ , the projection angle.

(Hint: Find the big angle of elevation, small angle of elevation and subtract!)

6. In the diagram below, quadrilateral *STAR* is a **rhombus** with diagonals \overline{SA} and TR intersecting at *E*. ST = 3x + 30, SR = 8x - 5, $\mathbf{m} \angle RTA = 5y - 2$, and $\mathbf{m} \angle TAS = 9y + 8$

(a) Find x:

(b) Find y: