Name: \qquad
UNIT 6

Date: \qquad

LESSON 8

AIM: WHAT ARE COFUNCTIONS?

Do Now: If two complementary angles are represented by $4 x$ and $7 x-9$, what is the value of x ?

Determine the following:	
$\cos \mathrm{B}=$	
What is the measure of angle A?	$\cos =$
What is the measure of angle B?	What is the measure of angle A?

SINE AND COSINE OF COMPLEMENTARY ANGLES

If A and B are complementary angles,

$$
\begin{aligned}
& \sin A=\cos B \\
& \cos A=\sin B
\end{aligned}
$$

When $0^{\circ}<\theta<90^{\circ}, \sin \left(90^{\circ}-\theta\right)=\cos \theta$ and $\sin \theta=\cos \left(90^{\circ}-\theta\right)$

1. In right triangle $D E F$, where $m \angle D=90^{\circ}$, which of the following statements is always true?
1) $\sin D=\cos F$
2) $\tan E=\cos F$
3) $\sin F=\cos E$
4) $\tan D=\sin E$

2. In right triangle $A B C$, where $m \angle B=90^{\circ}$, which of the following statements is always true?
1) $\sin A=\cos B$
2) $\sin A=\cos C$
3) $\tan A=\cos C$
4) $\sin A=\tan B$
3. Each of the following diagrams and examples is a right triangle. Fill in the blanks based on the sine \& cosine of angles that add to 90°

| | Right Triangle ABC with
 $m \angle C=90^{\circ}$. | Right Triangle DEF with
 $m \angle E=90^{\circ}$. |
| :--- | :--- | :--- | :--- |

4. When instructed to find the length of $\overline{H J}$ in right triangle $H J G$, Jia wrote the equation $\sin 62^{\circ}=\frac{G J}{20}$ while Dan wrote $\cos 28^{\circ}=\frac{G J}{20}$. Are both students' equations correct? Explain why.

Sine \& Cosine of Angles that add to 90°

$\sin A=\cos B$ if $A+B=$ \qquad ${ }^{\circ}$
5. Solve the following.
a) $\sin 27^{\circ}=\cos$ \qquad ${ }^{\circ}$
b) $\cos 55^{\circ}=\sin$ \qquad ${ }^{\circ}$
c) $\sin 17.8^{\circ}=\cos$ \qquad
d) $\cos 90^{\circ}=\sin$ \qquad -
e) $\cos 45^{\circ}=\sin$ \qquad - f) $\sin 62 \frac{2}{3}^{\circ}=\cos$ \qquad。
6. Find the value of θ that will make the equation $\sin \theta=\cos 37^{\circ}$ true when $0^{\circ}<\theta<90^{\circ}$. Explain your answer.
7. In a right triangle, $\sin (2 x-15)^{o}=\cos (x-12)^{o}$. What is the value of x ?
8. In a right triangle, $\sin (x+5)^{o}=\cos (4 x+10)^{o}$. What is the value of x ?
9. Find the value of B that will make the equation $\sin 62^{\circ}=\cos B$ true when $0^{\circ}<B<90^{\circ}$. Explain your answer.

NOW YOU TRY SOME! For questions 1-6, find values for θ that make each statement true:

$1 . \sin \theta=\cos 25^{\circ}$	$2 \cdot \sin 80^{\circ}=\cos \theta$
3. $\sin \theta=\cos (\theta+10)^{\circ}$	$4 \cdot \sin (\theta-45)^{\circ}=\cos \theta$

\qquad
\qquad

LESSON 8

HOMEWORK

1. In scalene triangle $A B C$ shown in the diagram below, $m \angle A=90^{\circ}$. Which equation is always true?
1) $\cos C=\cos B$
2) $\quad \sin C=\sin B$
3) $\sin B=\cos C$

4) $\cos B=\sin A$
2. In a right triangle, $\sin (5 x+15)^{\circ}=\cos (4 x-6)^{\circ}$. What is the value of x ?
3. Find the value of B that will make the equation $\sin 89^{\circ}=\cos B$ true when $0^{\circ}<B<90^{\circ}$. Explain your answer.
4. When instructed to find the length of $\overline{K L}$ in right triangle $H J G$, Conor wrote the equation $\cos 24^{\circ}=\frac{K L}{28}$ while Steve wrote $\sin 66^{\circ}=\frac{K L}{28}$. Are both students' equations correct? Explain why.

Review Question

5. As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 37 -foot-tall screen is 11 feet off the ground. The projector sits on the ground at a horizontal distance of 43 feet from the screen. Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.
(Hint: Find the big angle of elevation, small angle of elevation and subtract!)

6. In the diagram below, quadrilateral STAR is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E.
$S T=3 x+30, S R=8 x-5, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$
(a) Find x :

(b) Find y :
