\qquad

AIM: APPLICATIONS OF FINDING SIDES AND ANGLES USING SOHCAHTOA (DAY 2)

Do Now:

1. Find the length, to the nearest tenth of a cm , of the altitude(height) of an equilateral triangle given the side length measures 10 cm .
2. Find the length, to the nearest tenth of a cm , of the altitude(height) of an equilateral triangle given the side length measures 16 cm .

RECALL: Using Law of Sines to Find Sides in Double Triangles

1. Find all missing angles (Linear pair, angles in a triangle)
2. Find shared side first (Label ' y ')-
3. Set up proportion $\frac{\text { side }}{\sin \text { (opposite angle) }}=\frac{\text { side }}{\sin (\text { opposite angle) }}$
4. Cross multiply (make sure you write the number or variable BEFORE sine!
5. Using the side you just found (' y '), set up Law of Sines a second time to find ' x '

PRACTICE:

1. Find $A B$.

2. A ski lift begins at ground level 0.75 mile from the base of a mountain whose face has a 50° angle of elevation, as shown in the accompanying diagram. The ski lift ascends in a straight line at an angle of 20°. Find the length of the ski lift from the beginning of the ski lift to the top of the mountain, to the nearest hundredth of a mile.

3. Carmen and Jamal are standing 5,280 feet apart on a straight, horizontal road. They observe a hot-air balloon between them directly above the road. The angle of elevation from Carmen is 60° and from Jamal is 75°. Draw a diagram to illustrate this situation and find the height of the balloon to the nearest foot.
4. As Mr. Fox strolls down $34^{\text {th }}$ street, he glances up at the Empire State Building, and estimates the angle of elevation of his view to be 53.6°. After walking closer to the building, he makes another estimation of 64.7°. Knowing that the Empire State Building is 1250 feet tall, how far, to the nearest foot, was he from the building at each of the two locations where he took his estimates?

Name: \qquad
UNIT 6

Date:
LESSON 7

HOMEWORK

1. Find the length, to the nearest hundredth of a cm , of the altitude(height) of an equilateral triangle given the side length measures 9 cm .
2. In the diagram below, $\triangle E R M \sim \triangle J T M$. Which statement is always true?
1) $\cos J=\frac{R M}{R E}$
2) $\cos R=\frac{J M}{J T}$
3) $\tan T=\frac{R M}{E M}$

4) $\tan E=\frac{T M}{J M}$
3. Find x :

4. As shown in the map below, it is possible to get from Avon to Clarksville by traveling first to Bergen and then to Clarksville. The state department wants to build a straight highway to connect Avon directly to Clarksville. To the nearest tenth of a mile, the length of the new highway from Avon to Clarksville will be

5. In the diagram of parallelogram FRED shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

(1) 124°
(3) 68°
(2) 112°
(4) 56°
6. In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.
If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?
(1) 8
(3) 16
(2) 12
(4) 72

