Name:	Date:				
UNIT 6	LESSON 7				
AIM: APPLICATIONS OF FINDING SIDES AND ANGLES USING SOHCAHTOA (DAY 2)					
Do Now:					
1. Find the length, to the nearest tenth of a cm, of t side length measures 10 cm.	the altitude(height) of an equilateral triangle given the				

2. Find the length, to the nearest tenth of a cm, of the altitude(height) of an equilateral triangle given the side length measures 16 cm.

RECALL: Using Law of Sines to Find Sides in Double Triangles				
1. Find all missing angles (Linear pair, angles in	a triangle)			
2. Find shared side first (Label 'y')-				
3. Set up proportion $\frac{side}{\sin(opposite \ angle)} = \frac{1}{\sin(opposite \ angle)}$	side osite angle)			
4. Cross multiply (make sure you write the num	ber or variable BEFORE sine!			
5. Using the side you just found ('y'), set up Law	of Sines a second time to find 'x'			
PRACTICE:				
1. Find AB.				

2. A ski lift begins at ground level 0.75 mile from the base of a mountain whose face has a 50° angle of elevation, as shown in the accompanying diagram. The ski lift ascends in a straight line at an angle of 20°. Find the length of the ski lift from the beginning of the ski lift to the top of the mountain, to the *nearest hundredth of a mile*.

3. Carmen and Jamal are standing 5,280 feet apart on a straight, horizontal road. They observe a hot-air balloon between them directly above the road. The angle of elevation from Carmen is 60° and from Jamal is 75°. Draw a diagram to illustrate this situation and find the height of the balloon to the *nearest foot.*

4. As Mr. Fox strolls down 34th street, he glances up at the Empire State Building, and estimates the angle of elevation of his view to be 53.6°. After walking closer to the building, he makes another estimation of 64.7°. Knowing that the Empire State Building is 1250 feet tall, how far, *to the nearest foot*, was he from the building at each of the two locations where he took his estimates?

Name:			
UNIT 6			

HOMEWORK

Date: _____ LESSON 7

1. Find the length, to the nearest hundredth of a cm, of the altitude(height) of an equilateral triangle given the side length measures 9 cm.

2. In the diagram below, $\triangle ERM \sim \triangle JTM$. Which statement is always true?

1)
$$\cos J = \frac{RM}{RE}$$

2) $\cos R = \frac{JM}{JT}$
3) $\tan T = \frac{RM}{EM}$
4) $\tan E = \frac{TM}{JM}$

3. Find x:

4. As shown in the map below, it is possible to get from Avon to Clarksville by traveling first to Bergen and then to Clarksville. The state department wants to build a straight highway to connect Avon directly to Clarksville. To the *nearest tenth of a mile*, the length of the new highway from Avon to Clarksville will be

5. In the diagram of parallelogram *FRED* shown below, \overline{ED} is extended to *A*, and \overline{AF} is drawn such that $\overline{AF} \cong \overline{DF}$.

If
$$m \angle R = 124^\circ$$
, what is $m \angle AFD$?

- (1) 124° (3) 68°
- (2) 112° (4) 56°
- 6. In the diagram of $\triangle ABC$, points D and E are on \overline{AB} and \overline{CB} , respectively, such that $\overline{AC} \parallel \overline{DE}$. If AD = 24, DB = 12, and DE = 4, what is the length of \overline{AC} ?
 - (1) 8 (3) 16
 - (2) 12 (4) 72

