$\qquad$
$\qquad$
UNIT 6

## AIM: APPLICATIONS OF FINDING SIDES AND ANGLES USING SOHCAHTOA

Do Now: The center pole of a tent is 8 feet long, and a side of the tent is 12 feet long as shown in the diagram below. If a right angle is formed where the center pole meets the ground, what is the measure of angle $A$ to the nearest degree?

1) 34
2) 42
3) 48
4) 56


## Using Trigonometry to Find Missing Angles in a Right Triangle

1. Choose sine, cosine, or tangent based on the information.
2. Set up equation.
3. Use inverse trig function ( $2^{\text {nd }}$ sine/cosine/tangent \& (Fraction) ).

Example 1: As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 76 -foot-tall screen is 24 feet off the ground. The projector sits on the ground at a horizontal distance of 45 feet from the screen.
a) Determine and state, to the nearest thousandth of a degree, the measure of $\angle A D C$.
b) Determine and state, to the nearest thousandth of a degree, the measure of $\angle B D C$.

c) Determine and state, to the nearest tenth of a degree, the measure of $\theta$, the projection angle.

## NOW YOU TRY ONE!

1. As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 64 -foot-tall screen is 14 feet off the ground. The projector sits on the ground at a horizontal distance of 30 feet from the screen. Determine and state, to the nearest tenth of a degree, the measure of $\theta$, the projection angle. (Hint: Find the big angle of elevation, small angle of elevation and subtract!)


니

## WHAT IF WE SEE AN EXAMPLE LIKE THIS?

Example 2: While sailing a boat offshore, Donna see a lighthouse and calculates that the angle of elevation to the top of the lighthouse is $3^{\circ}$, as shown in the accompanying diagram before. When she sails her boat 700 feet closer to the lighthouse, she finds that the angle of elevation is now $5^{\circ}$. How tall, to the nearest tenth of foot, is the lighthouse?


## LAW OF SINES

- The Law of Sines states that the sine of an $\qquad$ is proportional to the side $\qquad$ the angle.
- We only use $\qquad$ of the possible ratios
(depending on what is given to us), thus producing a proportion we can solve.
- Why use Law of Sines instead of SOHCAHTOA?
- SOHCAHTOA is restricted to $\qquad$ triangles.
- Law of Sines can be used in $\qquad$ triangle!

Now, try solving the example above using Law of Sines! *FIND ALL ANGLE MEASURES FIRST!*

Example 3: Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be $34.9^{\circ}$. She walks 8 meters closer and determines the new measure of the angle of elevation to be $52.8^{\circ}$. At each measurement, the survey instrument is 1.7 meters above the ground.


Determine and state, to the nearest tenth of a meter, the height of the flagpole.

## NOW YOU TRY ONE!

The accompanying diagram shows the plans for a cell-phone tower that is to be built near a busy highway. Find the height of the tower, to the nearest foot.

$\qquad$

1. A ship at sea heads directly toward a cliff on the shoreline. The accompanying diagram shows the top of the cliff, $D$, sighted from two locations, $A$ and $B$, separated by distance $S$. If $\mathrm{m} \angle D A C=30, \mathrm{~m} \angle D B C=45$, and $S=30$ feet, what is the height of the cliff, to the nearest foot?

2. As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point $A$, the angle of elevation from the ship to the light was $7^{\circ}$. A short time later, at point $D$, the angle of elevation was $16^{\circ}$.


To the nearest foot, determine and state how far the ship traveled from point $A$ to point $D$.
3. As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 40 -foot-tall screen is 10 feet off the ground. The projector sits on the ground at a horizontal distance of 25 feet from the screen. Determine and state, to the nearest tenth of a degree, the measure of $\theta$, the projection angle.
(Hint: Find the big angle of elevation, small angle of elevation and subtract!)

4. Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $X=1$.


