Definition
If corresponding angles are
congruent and the ratio of
the corresponding sides are
in proportion, then the
triangles are similar.

Similar Triangles

- A pair of equilateral triangles.
- A pair of isosceles triangles with congruent base angles.
- A pair of isosceles triangles with congruent vertex angles.
- A pair of right triangles with congruent corresponding

1) All corresponding angles are congruent \{AAA similarity\}.
2) All corresponding sides are in the same proportion $\{$ SSS similarity $\}$.
3) Two pairs of corresponding sides are in the same proportion and the included angle between these corresponding sides are equal \{SAS similarity\}.

METHODS TO PROVE TRIANGELS ARE SIMILAR:

AA	SAS	SSS
If two pairs of corresponding angles are congruent, then the triangles are similar $\Varangle K \cong \Varangle H$ and $\Varangle M \cong \Varangle J$	If two pairs of corresponding sides are in proportion and one pair of corresponding angles are congruent, then the triangles are similar. $\frac{15}{10}=\frac{36}{24}=\frac{3}{2}$ and $\Varangle B \cong \Varangle Z$	If all three pairs of corresponding sides share the same ratio (scale factor), then the triangles are similar. $\frac{8}{6}=\frac{12}{9}=\frac{16}{12}=\frac{4}{3}$

| RNLARGEMENT | REDUCTION |
| :---: | :---: | :---: |
| When you go from small to big, k is greater than 1. | |
| $k=\frac{N E W}{O L D}$ | When you go from big to small, k is between 0 and 1. |
| | |

TOPIC \#3: RATIO OF THE SIDES, PERIMETERS AND AREAS

RATIO OF THE SIDES	Set up a proportion to find the SCALE FACTOR	$1: 2$
RATIO OF THE PERIMETERS	$\frac{15}{30}=\frac{20}{40}=\frac{25}{50}=\frac{\mathbf{1}}{\mathbf{2}}$	
Rhis ratio will always be the same		
as the ratio of the SIDES		
$\frac{(15+20+25)}{(30+40+50)}=\frac{\mathbf{1}}{\mathbf{2}}$		

SIDE-SPLITTER	SIDE-SPLITTER WITH BASES
WHEN THE PARALLEL SIDES ARE NOT LABELED, COMPARE THE SIDE LENGTHS) $\frac{2}{4}=\frac{x}{7} \mathrm{OR} \frac{2}{x}=\frac{4}{7} \mathrm{OR} \frac{6}{2}=\frac{x+7}{x}$	**WHEN THE PARALLEL SIDES ARE LABELED, COMPARE THE SMALL TRIANGLE (INSIDE) AND BIG tRIANGLE (OUTSIDE) $\frac{6}{x}=\frac{18}{16} \text { OR } \frac{x}{16}=\frac{6}{18}$ *DO NOT USE 12 IN THE PROPORTION!*

TOPIC \#5: RIGHT TRIANGLE PROPORTIONS

Drawing an altitude in a right triangle creates three similar right triangles!

$$
\triangle A C B \sim \triangle A D C \sim \triangle C D B
$$

GEOMETRIC MEAN (ALTITUDE) THEOREM

	SAAS! *The diagonal of the proportion must be the same number or variable!*

GEOMETRIC MEAN (LEG) THEOREM

Hypotenuse

Hypotenuse

HLLS!

The diagonal of the proportion must be the same number or variable!

IF THE CENTER OF DILATION IS ON THE LINE

The line $y=3 x$ is dilated by a scale factor of 2 and centered at the origin. Write the equation that represents the image of the line after the dilation.

THE RESULTING LINE WILL HAVE THE SAME EQUATION!
ANSWER: $y=3 x$
IF THE CENTER OF DILATION IS OFF THE LINE
The line $y=2 x+2$ is dilated by a scale factor of 3 and centered at the origin. Write the equation that represents the image of the line after the dilation.

THE RESULTING LINE WILL HAVE THE SAME SLOPE AND DIFFERENT Y-INTERCEPT!
To find the y-intercept, multiply the original y-intercept by the scale factor.
ANSWER: $y=2 x+2(3)$ or $y=2 x+6$
TOPIC \#7: SIMILARITY PROOFS

- You can only prove triangles are similar using $\underline{A A}$!
- Examples of congruent angles could be: reflexive, right angles, vertical angles, alternate interior angles, corresponding angles, etc.
- After you prove there are two pairs of corresponding congruent angles, complete the following statements/reasons:

	PROVE STATEMENT	REASON
1.	Similarity Statement	$A A \cong A A$
2.	$\triangle A B C \sim \triangle D E F$	Corresponding sides of similar triangles are in proportion.
	$\frac{A B}{B C}=\frac{D E}{E F}$	
3.	Proportion	The product of the means equals the product of the
	$B C x D E=A B x E F$	

	INSTRUCTIONS		
CENTER OF			
DILATION		1.	Connect all corresponding points from big
:---			
triangle to small triangle.			
Label the point of intersection the center of			
dilation.			

