UNIT 6 STUDY SHEET - SIMILARITY

TOPIC #1: SIMILAR TRIANGLES

METHODS TO PROVE TRIANGELS ARE SIMILAR:

AA	SAS	SSS
K M I H J If two pairs of corresponding angles are congruent, then the triangles are similar	If two pairs of corresponding sides are in proportion and one pair of corresponding angles are congruent, then the triangles are similar.	$A = \begin{bmatrix} A & & & \\ & & & & \\ & & & \\ & & & & $
$\measuredangle K \cong \measuredangle H$	15 36 3	8 12 16 4
and	$\frac{10}{10} = \frac{30}{24} = \frac{10}{2}$	$\overline{6} = \overline{9} = \overline{12} = \overline{3}$
$\measuredangle M \cong \measuredangle J$	and	
	$\measuredangle B \cong \measuredangle Z$	

TOPIC #2: SCALE FACTORS (k)

TOPIC #3: RATIO OF THE SIDES, PERIMETERS AND AREAS

RATIO OF THE SIDES	Set up a proportion to find the SCALE FACTOR $\frac{15}{30} = \frac{20}{40} = \frac{25}{50} = \frac{1}{2}$	1:2
RATIO OF THE PERIMETERS	This ratio will always be the same as the ratio of the SIDES $\frac{(15+20+25)}{(30+40+50)} = \frac{1}{2}$	1:2
RATIO OF THE AREAS	This ratio will always be the ratio of the perimeters/sides SQUARED . $(1)^2: (2)^2$	1:4

TOPIC #4: SIDE-SPLITTER

- You can only prove triangles are similar using <u>AA</u>!
- Examples of congruent angles could be: reflexive, right angles, vertical angles, alternate interior angles, corresponding angles, etc.
- After you prove there are two pairs of corresponding congruent angles, complete the following statements/reasons:

	PROVE STATEMENT	REASON
1.	Similarity Statement	$AA \cong AA$
	$\Delta ABC \sim \Delta DEF$	
2.	Proportion	Corresponding sides of similar triangles are in proportion.
	$\frac{AB}{BC} = \frac{DE}{EF}$	
3.	Product	The product of the means equals the product of the extremes
	BCxDE = ABxEF	

TOPIC #8: SCALE DRAWINGS

	INSTRUCTIONS	EXAMPLE
CENTER OF DILATION	 Connect all corresponding points from big triangle to small triangle. Label the point of intersection the center of dilation. 	B C C DUCTION!
TRIANGLES	 Extend the lines stemming from the center of dilation. If r > 1, measure the distance between the C.O.D and each point of the triangle. Move your compass and extend the length along the line according to the scale factor. If 0 < r < 1, construct perpendicular bisectors between each side length. Connect the new points 	