Name: \qquad

CC GEOMETRY

Date: \qquad

BATTA

UNIT 5: TAKE-HOME QUIZ
DUE: THURSDAY, 1/2/20!

1. Under which transformation would $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, not be congruent to $\triangle A B C$?
1) A dilation of scale factor 1 centered at
A
2) translation of 3 units right and 2 units down
3) rotation of 90° clockwise about the origin
4) dilation with a scale factor of 2 centered at the origin
2. Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?
1) Their areas have a ratio of $4: 1$.
2) Their altitudes(sides) have a ratio of $2: 1$.
3) Their perimeters have a ratio of $2: 1$.
4) Their corresponding angles have a ratio of $2: 1$.
3. In the diagram shown, $\triangle A B C$ is dilated by a scale factor of k to produce $\Delta A^{\prime} B^{\prime} C^{\prime}$. What of the following conclusions must be true?
1) $k>1$
2) $0<k<1$
3) $k<0$

4) The dilation is centered at B.
4. If $\overline{Y Z}$ is dilated by a factor of 5 about a point not on $\overline{Y Z}$ to produce the image $\overline{Y^{\prime} Z^{\prime}}$, then which of the following is true?
(1) $\overline{Y^{\prime} Z^{\prime}} \| \overline{Y Z}$ and $Y^{\prime} Z^{\prime}=\frac{1}{5} Y Z$
(3) $\overline{Y^{\prime} Z^{\prime}} \perp \overline{Y Z}$ and $Y^{\prime} Z^{\prime}=5 Y Z$
(2) $\overline{Y^{\prime} Z^{\prime}} \perp \overline{Y Z}_{\text {and }} Y^{\prime} Z^{\prime}=\frac{1}{5} Y Z$
(4) $\overline{Y^{\prime} Z^{\prime}} \| \overline{Y Z}$ and $Y^{\prime} Z^{\prime}=5 Y Z$
5. In the diagram below, $\triangle A B C \sim \triangle A D E$. Which measurements are justified by this similarity?
1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$

4) $A D=2, A B=6, A E=5$, and $A C=15$
6. In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$
What is the length of $\overline{B D}$?
1) $3 \sqrt{7}$
2) $4 \sqrt{7}$
3) $7 \sqrt{3}$

4) 12
7. In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$. What is the length of $\overline{A B}$?
1) $5 \sqrt{3}$
2) 6
3) $3 \sqrt{5}$

4) 9
8. In the diagram below, $\triangle A B C \sim \triangle D E C$. If $\mathrm{AC}=12, \mathrm{DC}=7, \mathrm{DE}=5$, and the perimeter of $D E C$ is 30 , what is the perimeter of $A B C$?
1) 12.5
2) 14.0
3) 14.8
4) 17.5

9. In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5, T B=7$, and $A C=18$. What is the length of $\overline{V C}$?

10. In the accompanying diagram, $\overline{D E} \| \overline{A C}$. If $B D=6, A D=2$, and $E D=9$, find the measure of $\overline{A C}$.

11. To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram. Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

12. In the diagram below, the line of sight from the park ranger station, \boldsymbol{P}, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, \boldsymbol{C}, and the first aid station, \boldsymbol{F}. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

a) If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station, \mathbf{P}, and the lifeguard chair, L.
b) Gerald believes the distance from the first aid station, \mathbf{F}, to the campground, \mathbf{C}, is at least 1.5 miles. Is Gerald correct? Justify your answer. (HINT: Find the length of FC to determine your answer)
