REVIEW

SIMILARITY REVIEW!

Pre-Image & Image Relationship	Side R	elationships
After a dilation($k \neq 1$) the two figures will be (congruent or similar?)	Lengths Image = k(pre-image) or Pre-image = $\frac{1}{k}$ (image)	Parallel or Perpendicular ImagePre-image $(\parallel ext{ or } \perp ?)$

1. Which transformation below shows a dilation?

1) $(x, y) \rightarrow (y, x)$ 2) $(x, y) \rightarrow (\frac{1}{2}x, \frac{1}{2}y)$ 3) $(x, y) \rightarrow (x+2.5, y-4)$ 4) $(x, y) \rightarrow (-x, y)$

2. If DDEF is dilated by a factor of 5, which of the following statements would be true?

(1) $m \Theta D' = 5 \times m \Theta D$	$(3) m \Theta E = \frac{1}{5} \times m \Theta E'$
(2) $DE = \frac{1}{5}D'E'$	(4) $EF = 5E'F'$

3. A three-inch line segment is dilated by a scale factor of 6 and centered off the segment. Which of the following statements is true of the image?

1) Length is 18 inches and is parallel to the original

2) Length is 18 inches and is perpendicular to the original

3) Length is 9 inches and is parallel to the original

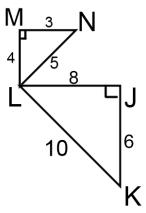
4) Length is 9 inches and is perpendicular to the original

4. The image of $\triangle DEF$ is $\triangle D'E'F$. Under which transformation will the triangles *not* be congruent?

1) a reflection through the origin	3) a dilation with a scale factor of 1 centered at (2, 3)
2) a reflection over the line $y = x$	4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

5. The coordinates of $\triangle ABC$ are A(1, 1), B(2, 3), and C(3, 1). If $\triangle A'B'C'$ is the image of $\triangle ABC$ after a dilation centered at the origin with a scale factor of 2 followed by a reflection over the line y = x, then $\triangle A'B'C'$ is

- 1) an equilateral triangle
- 2) congruent to $\triangle ABC$
- 3) a right triangle
- 4) similar to $\triangle ABC$

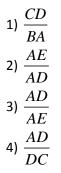

Describing Transformations!			
Reflection needs Line of Reflection 	Rotation needs Center Angle Direction 	Translation needsDistanceDirection	Dilation needs Center Scale Factor

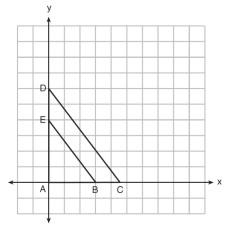
6. Which sequence of transformations will map ΔJKL onto ΔMNL ?

- 1) Rotation 90° CCW around L, followed by a dilation scale factor of 2 centered at L.
- 2) Rotation 90° CCW around L, followed by a

dilation scale factor of $\frac{1}{2}\,$ centered at L.

- 3) Reflection over \overline{LJ} , followed by a dilation scale factor of 2 centered at L.
- 4) Rotation 180° CCW around L, followed by a dilation scale factor of $\frac{1}{2}$ centered at L.


Scale Factor (k)


k = -----

7. In the diagram below, \overline{CD} is the image of \overline{AB} after a dilation of scale factor k with center O. Which ratio is equal to the scale factor k of the dilation?

8. In the diagram below, $\triangle ABE$ is the image of $\triangle ACD$ after a dilation centered at the origin. The coordinates of the vertices are A(0, 0), B(3, 0), C(4.5, 0), D(0, 6), and E(0, 4). The scale factor is

Dilating Lines and Segments	
If CENTER ON THE LINE	If CENTER OFF THE LINE
Keep & the SAME.	Keep the the same. (because image is parallel to pre-image) Multiply the by the scale factor (k).

9. Line ℓ is mapped onto line *m* by a dilation centered at the origin with a scale factor of 3. The equation of line ℓ is 2x - y = 8. Determine and state an equation for line *m*.

10. Line y = 3x - 1 is transformed by a dilation with a scale factor of 2 and centered at (3, 8). The line's image is

- 1) y = 3x 8
- 2) y = 3x 4
- 3) y = 3x 2
- 4) y = 3x 1

Ratio of Areas

Ratio Sides/Perimeters = x : y

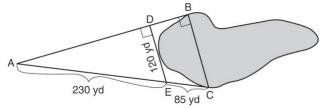
Ratio Areas = ____

11. The sides of a triangle are 8, 12 and 15. The longest side of a similar triangle is 18. What is the ratio of the area of the smaller triangle to the area of the larger triangle?

a. 2:3

b. 4:9

c. 5:6

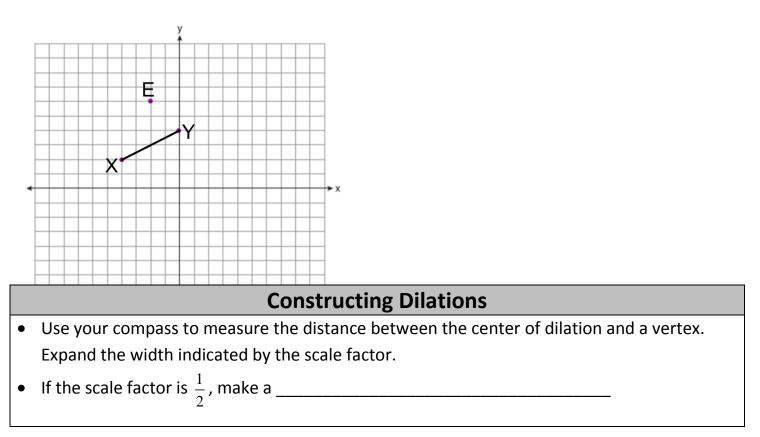

d. 25:36

Side Splitter	Side Splitter with BASES
$\overline{\overline{PT}} \parallel \overline{\overline{OR}}$, find the length of MT.	MUST USE SMALL TRIANGLE AND BIG TRIANGLE!
M	$\overline{AC} \parallel \overline{DE}$. If $AD = 24$, $DB = 12$, and $DE = 4$, what is the
	length of \overline{AC} ?
0 R	

12. In the diagram below, triangle *ACD* has points *B* and *E* on sides \overline{AC} and \overline{AD} , respectively, such that $\overline{BE} \parallel \overline{CD}$, AB = 1, BC = 3.5, and AD = 18. What is the length of \overline{AE} , to the *nearest tenth*?

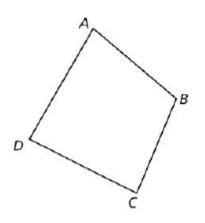
1) 14.0	
2) 5.1	B
3) 3.3	3.5
4) 4.0	C D

13. To find the distance across a pond from point *B* to point *C*, a surveyor drew the diagram below. The measurements he made are indicated on his diagram. Use the surveyor's information to determine and state the distance from point *B* to point *C*, to the *nearest yard*.



14. A tree casts a shadow 20 feet long. A vertical pole stands at a distance of 17 feet from the base of the tree, such that the end of the pole's shadow meets the end of the tree's shadow. If the pole is 5 feet tall, determine and state the height of the tree to the *nearest tenth of a foot*.

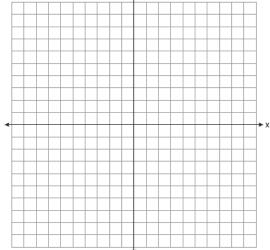
Dilating on a graph by center not at the origin


Count boxes (like slope) from ______ of dilation to one vertex, repeat same distances in same direction for dilation of 2! (continue to repeat again for dilation 3) *OR! Use a compass and straight edge!*

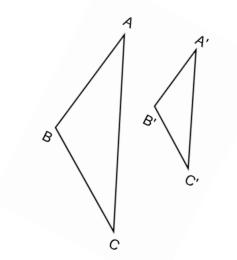
15. On the graph below, point E(-2, 6) and \overline{XY} with coordinates X(-4, 2) and Y(0, 4) are graphed. What are the coordinates of X and Y after \overline{XY} undergoes a dilation centered at point *E* with a scale factor of 2?

16. Use a compass and a straightedge to construct the image of the figure after a dilation with center O and

the given scale factor. Label the vertices of the image. Scale factor: $\frac{1}{2}$



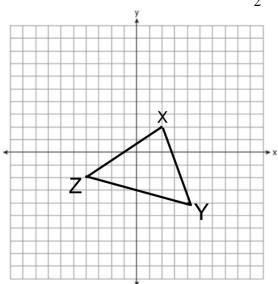
17. Use a compass and a straightedge to construct the image of the figure after a dilation with center O and the given scale factor. Label the vertices of the image. Scale factor: 4


0.

To find Center of Dilation	To Find Scale Factor
Connect to (and PAST small) for 2 pairs of corresponding points.	k = ——— (count lengths using only vertical/horizontal segments)

18. The coordinates of the endpoints of \overline{YZ} are Y(4,2) and Z(-8,2). The coordinates of endpoints $\overline{Y'Z'}$ are Y'(2,1) and Z'(-4,1). Precisely describe the SINGLE transformation that maps \overline{YZ} onto $\overline{Y'Z'}$. [The use of the set of axes below is optional.]

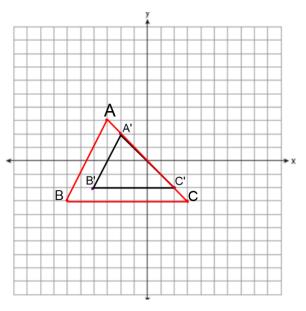
19. Locate the center of dilation that maps ΔABC to $\Delta A'B'C'$ and label it *O*.

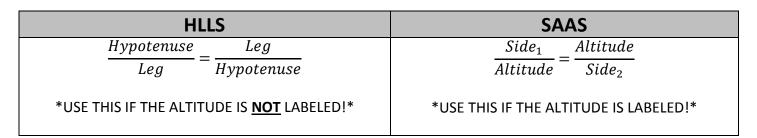

To Dilate Centered at the Origin	In Similar Figures
Multiply each coordinate by the	Corresponding sides are
(k).	Corresponding angles are

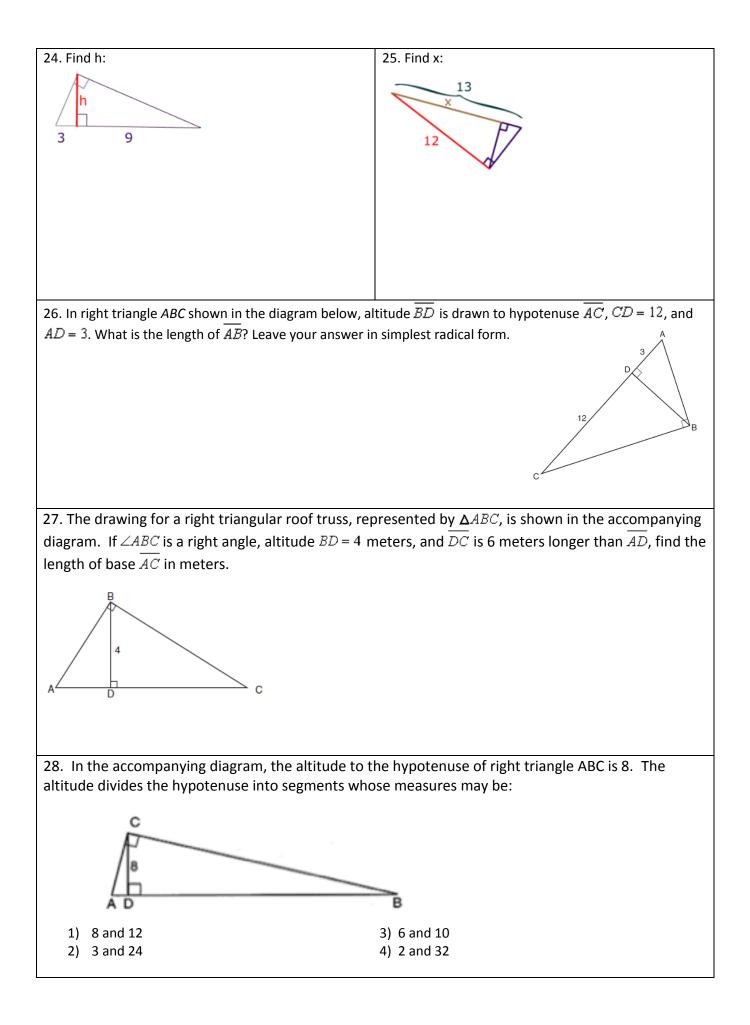
20. Triangle *XYZ* is graphed on the set of axes below.

a) On the same set of axes, graph and label $\Delta X'Y'Z'$, the image of ΔXYZ after a dilation with a scale factor of $\frac{5}{2}$

centered at the origin.


b) What is the relationship between the measure of $\angle X'Y'Z'$ and the measure of $\angle XYZ$?


Describing Dilations	Finding Slope
Dilation needs Center 	rise
Scale Factor	run


21. In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a SINGLE transformation.

b) Use slopes to explain why $\overline{A'B'} \parallel \overline{AB}$?

Simil	Similarity Proofs		
PROVE STATEMENT	REASON		
. Similarity Statement $\Delta ABC \sim \Delta DEF$	$AA \cong AA$		
$\frac{AB}{BC} = \frac{DE}{EF}$	Corresponding parts of similar triangles are in proportion.		
$\begin{array}{c} & & & \\ Product \\ & & BCxDE = ABxEF \end{array}$	The product of the means equals the product of th extremes		
29. Given: \overline{AE} and \overline{DB} intersect at C $\overline{AB} \parallel \overline{DE}$ Prove: $BC \cdot ED = AB \cdot DC$			
STATEMENT	REASON		