\qquad
\qquad

SIMILARITY REVIEW!

Pre-Image \& Image Relationship	Side Relationships		
After a dilation $(k \neq 1)$ the two figures will be	Image $=k$ (pre-image)	Parallel or Perpendicular	
(congruent or similar?)	Image $\overline{\text { or }}$ Pre-image		
(\\| or \perp ?)			

1. Which transformation below shows a dilation?
1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow\left(\frac{1}{2} x, \frac{1}{2} y\right)$
3) $(x, y) \rightarrow(x+2.5, y-4)$
4) $(x, y) \rightarrow(-x, y)$
2. If $D E F$ is dilated by a factor of 5 , which of the following statements would be true?
(1) $m \quad D^{\prime}=5 \times m \quad D$
(3) $m \quad E=\frac{1}{5} \times m \quad E^{\prime}$
(2) $D E=\frac{1}{5} D^{\prime} E^{\prime}$
(4) $E F=5 E^{\prime} F^{\prime}$
3. A three-inch line segment is dilated by a scale factor of 6 and centered off the segment. Which of the following statements is true of the image?
1) Length is 18 inches and is parallel to the original
2) Length is 18 inches and is perpendicular to the original
3) Length is 9 inches and is parallel to the original
4) Length is 9 inches and is perpendicular to the original
4. The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{F}$. Under which transformation will the triangles not be congruent?
1) a reflection through the origin
2) a dilation with a scale factor of 1 centered at $(2,3)$
3) a reflection over the line $y=x$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin
5. The coordinates of $\triangle A B C$ are $A(1,1), B(2,3)$, and $C(3,1)$. If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation centered at the origin with a scale factor of 2 followed by a reflection over the line $y=x$, then $\triangle A^{\prime} B^{\prime} C^{\prime}$ is
1) an equilateral triangle
2) congruent to $\triangle A B C$
3) a right triangle
4) similar to $\triangle A B C$

Describing Transformations!

Reflection needs

- Line of Reflection

Rotation needs

- Center
- Angle
- Direction

Translation needs

- Distance
- Direction

Dilation needs

- Center
- Scale Factor

6. Which sequence of transformations will map $\triangle J K L$ onto $\triangle M N L$?
1) Rotation $90^{\circ} \mathrm{CCW}$ around L , followed by a dilation scale factor of 2 centered at L .
2) Rotation $90^{\circ} \mathrm{CCW}$ around L , followed by a dilation scale factor of $\frac{1}{2}$ centered at L .
3) Reflection over $\overline{L J}$, followed by a dilation scale factor of 2 centered at L .
4) Rotation $180^{\circ} \mathrm{CCW}$ around L , followed by a dilation scale factor of $\frac{1}{2}$ centered at L .

Scale Factor (k)

$$
k=
$$

7. In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center O.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{O C}{O A}$
2) $\frac{B A}{O A}$
3) $\frac{O A}{B A}$
4) $\frac{O A}{O C}$
8. In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0), C(4.5,0), D(0,6)$, and $E(0,4)$. The scale factor is
1) $\frac{C D}{B A}$
2) $\frac{A E}{A D}$
3) $\frac{A D}{A E}$
4) $\frac{A D}{D C}$

Dilating Lines and Segments	
If CENTER ON THE LINE Keep \qquad \& \qquad - \qquad the SAME.	If CENTER OFF THE LINE Keep the \qquad the same. (because image is parallel to pre-image) Multiply the \qquad - \qquad by the scale factor (k).

9. Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 3 . The equation of line ℓ is $2 x \quad y=8$. Determine and state an equation for line m.
10. Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is
1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$

Ratio of Areas
Ratio Sides/Perimeters $=x: y$
Ratio Areas $=\ldots$

11. The sides of a triangle are 8,12 and 15 . The longest side of a similar triangle is 18 . What is the ratio of the area of the smaller triangle to the area of the larger triangle?
a. 2:3
b. $4: 9$
c. 5:6
d. $25: 36$

Side Splitter	Side Splitter with BASES		
$\overline{P T} \\| \overline{O R}$, find the length of MT .	MUST USE SMALL TRIANGLE AND BIG TRIANGLE! $\overline{A C} \\| \overline{D E}$. If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?		

12. In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1$, $B C=3.5$, and $A D=18$. What is the length of $\overline{A E}$, to the nearest tenth?
1) 14.0
2) 5.1
3) 3.3
4) 4.0

13. To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram. Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

14. A tree casts a shadow 20 feet long. A vertical pole stands at a distance of 17 feet from the base of the tree, such that the end of the pole's shadow meets the end of the tree's shadow. If the pole is 5 feet tall, determine and state the height of the tree to the nearest tenth of a foot.

Dilating on a graph by center not at the origin

Count boxes (like slope) from \qquad of dilation to one vertex, repeat same distances in same direction for dilation of 2! (continue to repeat again for dilation 3) *OR! Use a compass and straight edge!*
15. On the graph below, point $E(-2,6)$ and $\overline{X Y}$ with coordinates $X(-4,2)$ and $Y(0,4)$ are graphed. What are the coordinates of X ' and Y^{\prime} after $\overline{X Y}$ undergoes a dilation centered at point E with a scale factor of 2 ?

Constructing Dilations

- Use your compass to measure the distance between the center of dilation and a vertex. Expand the width indicated by the scale factor.
- If the scale factor is $\frac{1}{2}$, make a \qquad

16. Use a compass and a straightedge to construct the image of the figure after a dilation with center O and the given scale factor. Label the vertices of the image. Scale factor: $\frac{1}{2}$

17. Use a compass and a straightedge to construct the image of the figure after a dilation with center O and the given scale factor. Label the vertices of the image. Scale factor: 4

To find Center of Dilation
Connect \qquad to \qquad (and PAST small) for 2 pairs of corresponding points.
18. The coordinates of the endpoints of $\overline{Y Z}$ are $Y(4,2)$ and $Z(-8,2)$. The coordinates of endpoints $\overline{Y^{\prime} Z^{\prime}}$ are $Y^{\prime}(2,1)$ and $Z^{\prime}(-4,1)$. Precisely describe the SINGLE transformation that maps $\overline{Y Z}$ onto $\overline{Y^{\prime} Z^{\prime}}$. IThe use of the set of axes below is optional.]

19. Locate the center of dilation that maps $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$ and label it O.

To Dilate Centered at the Origin \quad In Similar Figures
Multiply each coordinate by the
Corresponding sides are \qquad _.
(k).
20. Triangle $X Y Z$ is graphed on the set of axes below.
a) On the same set of axes, graph and label $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$ after a dilation with a scale factor of $\frac{5}{2}$ centered at the origin.
b) What is the relationship between the measure of $\angle X^{\prime} Y^{\prime} Z^{\prime}$ and the measure of $\angle X Y Z$?

Describing Dilations

Dilation needs

- Center
- Scale Factor

Finding Slope
rise
run
21. In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a SINGLE transformation.
a) Precisely describe the single transformation that was performed.
b) Use slopes to explain why $\overline{A^{\prime} B^{\prime}} \| \overline{A B}$?

HLLS	SAAS
$\frac{\text { Hypotenuse }}{\text { Leg }}=\frac{\text { Leg }}{\text { Hypotenuse }}$	$\frac{\text { Side }_{1}}{\text { Altitude }^{\text {Hy }}=\frac{\text { Altitude }^{\text {Side }_{2}}}{}}$*USE THIS IF THE ALTITUDE IS $\underline{\text { NOT LABELED!* }}$

22. In the diagram below of triangle $A B C, \overline{C D}$ is the altitude to $\overline{A B}, C B=p, \mathrm{AD}=5$, and $\mathrm{DB}=6$. What value of p will make $\triangle A B C$ a right triangle with a right angle at $\angle A C B$?

23. Triangle $A B C$ shown below is a right triangle with $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$. If $B D=2$ and $D C=10$, what is the length of $\overline{A D}$ that makes $\overline{A D} \perp \overline{B C}$?
1) $2 \sqrt{2}$
2) $2 \sqrt{5}$
3) $2 \sqrt{6}$
4) $2 \sqrt{30}$

26. In right triangle $A B C$ shown in the diagram below, altitude $B D$ is drawn to hypotenuse $A C, C D=12$, and $A D=3$. What is the length of $\overline{A B}$? Leave your answer in simplest radical form.

27. The drawing for a right triangular roof truss, represented by $\triangle A B C$, is shown in the accompanying diagram. If $\angle A B C$ is a right angle, altitude $B D=4$ meters, and $\overline{D C}$ is 6 meters longer than $\overline{A D}$, find the length of base $\overline{A C}$ in meters.

28. In the accompanying diagram, the altitude to the hypotenuse of right triangle $A B C$ is 8 . The altitude divides the hypotenuse into segments whose measures may be:

1) 8 and 12
2) 3 and 24
3) 6 and 10
4) 2 and 32

Similarity Proofs		
	PROVE STATEMENT	REASON
1.	Similarity Statement	$A A \cong A A$
2.	$\Delta A B C \sim \Delta D E F$	Proportion
	$\frac{A B}{B C}=\frac{D E}{E F}$	Corresponding parts of similar triangles are in proportion.
3.	$B C x D E=A B x E F$	The product of the means equals the product of the extremes

29. Given: $\overline{A E}$ and $\overline{D B}$ intersect at C $\overline{A B} \| \overline{D E}$

Prove: $B C \cdot E D=A B \cdot D C$

