\qquad

AIM: HOW DO WE CONSTRUCT DILATIONS?

SCENARIO \#1: DILATING FIGURES FROM A POINT NOT ON THE FIGURE WHEN k > 1

STEPS:

1. Connect center of dilation to each vertex of the triangle. Extend the lines beyond the triangle.
2. Using you compass, measure the distance from the center of dilation to one of the vertices. This represents a scale factor of 1.
3. Move the needle of your compass to the vertex on the triangle and make an arc on the extended line. This represents a scale factor of 2 .
4. Each repetition of step 3 will represent a greater scale factor. Continue this until you meet your desired scale factor.
5. Repeat this process for each vertex of the triangle.
6. Connect new points.

EXAMPLE \#1: Create a scale drawing of the figure below about center O and scale factor $r=2$.

EXAMPLE \#2: Construct the image of $\triangle A B C$ after a dilation with center of dilation O and scale factor 3 .

Length of the Sides	Ratio of the sides (\&Perimeters)?	Ratio of the areas of the triangles?	Corresponding sides (Fill in with $\\|$ or \perp)	In a well-scaled dilation it will ALWAYS be true that...
$\begin{aligned} & A^{\prime} B^{\prime}=_\quad A B \\ & A B=_A^{\prime} B^{\prime} \end{aligned}$	(Pre-image:Image)	(Pre-image:Image)	$A B _\ldots A^{\prime} B^{\prime}$	Corresponding sides are \qquad Corresponding angles are \qquad

SCENARIO \#2: DILATING A FIGURE FROM A POINT ON THE FIGURE WHEN k > 1

STEPS:

1. Extend the line segments of triangle stemming from the center of dilation.
2. Using you compass, measure the distance from the center of dilation to one of the vertices. This represents a scale factor of 1 .
3. Move the needle of your compass to the vertex on the triangle and make an arc on the extended line. This represents a scale factor of 2.
4. Each repetition of step 3 will represent a greater scale factor. Continue this until you meet your desired scale factor.
5. Repeat this process for each vertex of the triangle.
6. Connect new points.

EXAMPLE \#1: Construct a scale drawing of $\triangle A B C$ with a scale factor of $r=2$, and with the center of dilation at point A.

Length of the Sides	Ratio of the sides (\&Perimeters)?	Ratio of the areas of the triangles?	In a well-scaled dilation it will ALWAYS be true that...
$A^{\prime} B^{\prime}=\ldots _A B$ $A B=__A^{\prime} B^{\prime}$	(Pre-image:Image)	(Pre-image:Image)	Corresponding sides are _-_

EXAMPLE \#2: Create a scale drawing of the figure below about center \boldsymbol{D} and scale factor $\boldsymbol{r}=\frac{5}{2}$.

SCENARIO \#3: DILATING A FIGURE FROM A POINT NOT ON THE FIGURE WHEN 0 < k < 1

STEPS:

1. Connect center of dilation to each vertex of the triangle.
2. Given a scale factor of $\frac{1}{2}$, using you compass, construct a perpendicular bisector from the center of dilation to a vertex. The midpoint represents your new point.
3. If your scale factor is $\frac{1}{4}$, using your compass, construct a second perpendicular bisector from the center of dilation to the new point obtained from step 2.
4. Repeat this process for each vertex of the triangle.
5. Connect new points.

EXAMPLE: Create a scale drawing of the figure below about center \boldsymbol{O} and a scale factor of $\boldsymbol{r}=\frac{\mathbf{1}}{\mathbf{2}}$.

EXAMPLE \#2: Create a scale drawing of the figure below about center O and scale factor $r=\frac{\mathbf{1}}{\mathbf{4}}$.

SCENARIO \#4: DILATING A FIGURE FROM A POINT ON THE FIGURE WHEN $0<\mathrm{k}<1$

STEPS:

1. Construct a perpendicular bisector between the center of dilation and each vertex. The midpoint is your new point.
2. Connect new points.

EXAMPLE \#1: Create a scale drawing of the figure below about center \boldsymbol{B} and a scale factor of $\boldsymbol{r}=\frac{\mathbf{1}}{\mathbf{2}}$.

EXAMPLE \#2: Create a scale drawing of the figure below about center \boldsymbol{X} and a scale factor of $\boldsymbol{r}=\frac{\mathbf{1}}{\mathbf{4}}$. X

