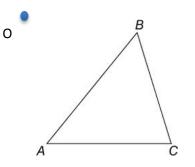
Nan	ne:	
UNI	Т5	

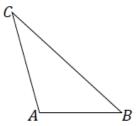

AIM: HOW DO WE CONSTRUCT DILATIONS?

SCENARIO #1: DILATING FIGURES FROM A POINT NOT ON THE FIGURE WHEN k > 1 *STEPS:*

- 1. Connect center of dilation to each vertex of the triangle. Extend the lines beyond the triangle.
- 2. Using you compass, measure the distance from the center of dilation to one of the vertices. This represents a scale factor of 1.
- 3. Move the needle of your compass to the vertex on the triangle and make an arc on the extended line. This represents a scale factor of 2.
- 4. Each repetition of step 3 will represent a greater scale factor. Continue this until you meet your desired scale factor.
- 5. Repeat this process for each vertex of the triangle.
- 6. Connect new points.

EXAMPLE #1: Create a scale drawing of the figure below about center *O* and scale factor r = 2.

EXAMPLE #2: Construct the image of $\triangle ABC$ after a dilation with center of dilation *O* and scale factor 3.


Length of the Sides	Ratio of the <u>sides</u> (& <u>Perimeters</u>)?	Ratio of the <u>areas</u> of the triangles?	Corresponding sides (Fill in with \parallel or \perp)	In a well-scaled dilation it will ALWAYS be true that
$A'B' = \underline{\qquad} AB$ $AB = \underline{\qquad} A'B'$: (Pre-image:Image)	: (Pre-image:Image)	ABA'B'	Corresponding sides are Corresponding angles are

SCENARIO #2: DILATING A FIGURE FROM A POINT ON THE FIGURE WHEN k > 1

STEPS:

- 1. Extend the line segments of triangle stemming from the center of dilation.
- 2. Using you compass, measure the distance from the center of dilation to one of the vertices. This represents a scale factor of 1.
- 3. Move the needle of your compass to the vertex on the triangle and make an arc on the extended line. This represents a scale factor of 2.
- 4. Each repetition of step 3 will represent a greater scale factor. Continue this until you meet your desired scale factor.
- 5. Repeat this process for each vertex of the triangle.
- 6. Connect new points.

EXAMPLE #1: Construct a scale drawing of $\triangle ABC$ with a scale factor of r = 2, and with the center of dilation at point A.

Length of the Sides	Ratio of the <u>sides</u> (& <u>Perimeters</u>)?	Ratio of the <u>areas</u> of the triangles?	In a well-scaled dilation it will ALWAYS be true that
$A'B' = __AB$ $AB = __A'B'$: (Pre-image:Image)	: (Pre-image:Image)	Corresponding sides are Corresponding angles are

EXAMPLE #2: Create a scale drawing of the figure below about center **D** and scale factor $r = \frac{5}{2}$.

SCENARIO #3: DILATING A FIGURE FROM A POINT NOT ON THE FIGURE WHEN 0 < k < 1

STEPS:

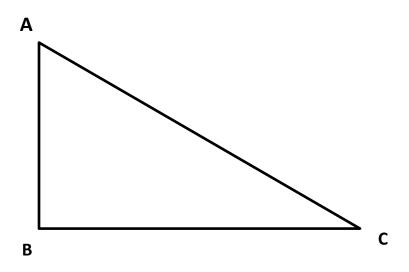
- 1. Connect center of dilation to each vertex of the triangle.
- 2. Given a scale factor of $\frac{1}{2'}$ using you compass, construct a perpendicular bisector from the center of dilation to a vertex. The midpoint represents your new point.
- 3. If your scale factor is $\frac{1}{4}$, using your compass, construct a second perpendicular bisector from the center of dilation to the new point obtained from step 2.
- 4. Repeat this process for each vertex of the triangle.
- 5. Connect new points.

EXAMPLE: Create a scale drawing of the figure below about center **O** and a scale factor of $r = \frac{1}{2}$.

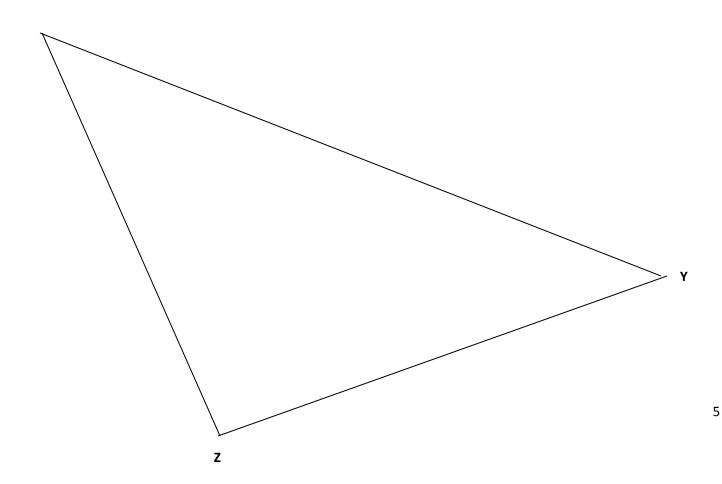
A B C

EXAMPLE #2: Create a scale drawing of the figure below about center **O** and scale factor $r = \frac{1}{4}$.

0•


в

SCENARIO #4: DILATING A FIGURE FROM A POINT ON THE FIGURE WHEN 0 < k < 1 $\,$


STEPS:

- 1. Construct a perpendicular bisector between the center of dilation and each vertex. The midpoint is your new point.
- 2. Connect new points.

EXAMPLE #1: Create a scale drawing of the figure below about center **B** and a scale factor of $r = \frac{1}{2}$.

EXAMPLE #2: Create a scale drawing of the figure below about center **X** and a scale factor of $r = \frac{1}{4}$.

