Name: \qquad
UNIT 5
Date: \qquad

LESSON 6

AIM: HOW DO WE SOLVE PROPORTIONS IN SIMILAR RIGHT TRIANGLES (DAY 2-HLLS)?

Do Now: If $\overline{Y Z}$ is dilated by a factor of 2 about a point not on $\overline{Y Z}$ to produce the image $\overline{Y^{\prime} Z^{\prime}}$, then which of the following is true?
(1) $\overline{Y^{\prime} Z^{\prime}} \| \overline{Y Z}$ and $Y^{\prime} Z^{\prime}=\frac{1}{2} Y Z$
(3) $\overline{Y^{\prime} Z^{\prime}} \perp \overline{Y Z}$ and $Y^{\prime} Z^{\prime}=2 Y Z$
(2) $\overline{Y^{\prime} Z^{\prime}} \perp \overline{Y Z}_{\text {and }} Y^{\prime} Z^{\prime}=\frac{1}{2} Y Z$
(4) $\overline{Y^{\prime} Z^{\prime}} \| \overline{Y Z}$ and $Y^{\prime} Z^{\prime}=2 Y Z$

Follow along with the video and complete the following example: (9:49-12:42)

WHAT IS AN EASIER WAY TO DO THIS?!

GEOMETRIC MEAN (LEG) THEOREM

HOW DO WE KNOW IF WE ARE USING HLLS OR SAAS?
If the \qquad is labeled with a number or variable, then you are using \qquad !

If the altitude has nothing marked on it, then you are using \qquad !

HLLS \& SAAS- MIXED PRACTICE!

1. In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$. If $A D=8$ and $A B=17$ find the length of the altitude in simplest radical form.

2. In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D. If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?

3. In the diagram of right triangle $A B C, \overline{B D}$ intersects hypotenuse $\overline{A C}$ at D. If $A C=16$ and $C D=7$, in simplest radical form, what length of $\overline{B D}$ makes $\overline{B D} \perp \overline{A C}$?

4. In the diagram below, $\overline{Q M}$ is an altitude of right triangle $P Q R, P M=8$, and $R M=18$. What is the length of $\overline{Q M}$?

5. Kirstie is testing values that would make triangle $K L M$ a right triangle when $\overline{L N}$ is an altitude, as shown below. If $K M / 2=16$, and $L M=12$. Determine the length of $\overline{N M}$.

6. Triangle $A B C$ shown below is a right triangle with $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$. If $B D=2$ and $D C=10$, what length of $A B$, in simplest radical form, makes $\overline{A D} \perp \overline{B C}$?

7. In the diagram below of right triangle $A B C$, altitude $B D$ is drawn to hypotenuse $A C . A D=4$, and $C D=7$. What is the length of $A B$?

8. In right triangle $A B C, C D$ is the altitude drawn to hypotenuse $A B$. If the length of $C D=8$, and $A D$ is 12 units more than DB:
a) Find $D B$.

b) Using your answers from above, find the length of CB in simplest radical form.
9.

In the diagram of $\triangle D E F$, the altitude from right angle $\angle D F E$ has been drawn to $\overline{D E}$. If $D G=4$ and $G E=8$, then which of the following is the length of $\overline{F G}$?
(1) $4 \sqrt{2}$
(3) 12
(2) $3 \sqrt{10}$
(4) 6

10.
$\mathrm{X}=$ \qquad

11.

\qquad
\qquad

HOMEWORK

1. Solve for x, in simplest radical form.

2. Solve for x .

3. Solve for x .

4. Solve for x, to the nearest tenth.

5. Triangle $A B C$ shown below is a right triangle with altitude $A D$ drawn to the hypotenuse $B C$. If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$ in simplest radical form?

