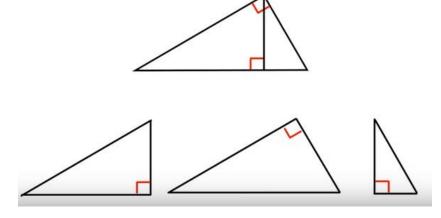
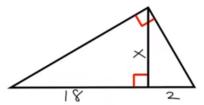
UNIT 5

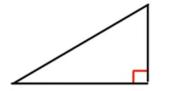
LESSON 5


AIM: HOW DO WE SOLVE PROPORTIONS IN SIMILAR RIGHT TRIANGLES (DAY 1- SAAS)?

Do Now: Determine and state to the nearest hundredth of a mile the length of \overline{PL} .

Follow along with the video to complete the following (STOP @ 9:48):


- Follow along and mark the diagrams below with the video:

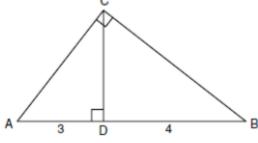


• Therefore, whenever you have a ______ triangle with an altitude drawn to the ______, all 3 triangles will be ______! Sides of similar triangles are in proportion!

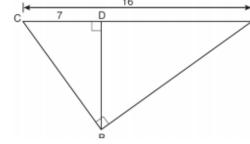
Solve for x:

WHAT IS A FASTER WAY TO DO THIS?!

Definition:

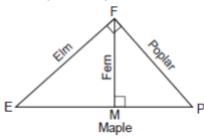

The mean proportional, or geometric mean, of two positive

numbers a and b is the positive number x such that $\frac{a}{x} = \frac{x}{b}$. When solving, $x = \sqrt{a \cdot b}$.

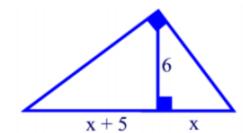

Notice that the x value appears TWICE in the "means" positions of the proportion.

PRACTICE PROBLEMS!

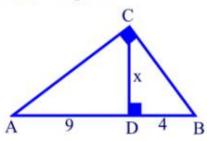
In the diagram below of right triangle ACB, altitude \(\overline{CD}\) intersects \(\overline{AB}\) at D. If \(AD = 3\) and \(DB = 4\), find the length of \(\overline{CD}\) in simplest radical form.



In the diagram below of right triangle ABC, altitude \overline{BD} is drawn to hypotenuse \overline{AC} , $\overline{AC} = 16$, and $\overline{CD} = 7$. What is the length of \overline{BD} in simplest radical form?


3 In right triangle ABC, \(\overline{CD}\) is the altitude to the hypotenuse, \(\overline{AB}\). If the length of the altitude is 8 feet and the length of the shorter segments is 2 feet, find the length of the longer segment.

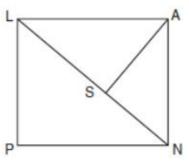
4 Four streets in a town are illustrated in the accompanying diagram. If the distance from F to M is 12 miles and the distance on Maple Street from E to M is 10 miles, find the distance on Maple Street, in miles, from M to P.


In right triangle ABC, \(\overline{CD}\) is the altitude to the hypotenuse, \(\overline{AB}\). The segments of the hypotenuse, \(\overline{AB}\), are in the ratio of 1:4. The altitude is 6. Find the two segments of the hypotenuse.

6 Given the diagram to the right, solve for x.

HOMEWORK

1. In the diagram below of right triangle ACB, altitude CD intersects AB at D. Find the length of CD.

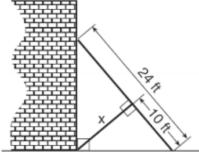

2. The accompanying diagram shows part of the architectural plans for a structural support of a building. PLAN is a rectangle and AS \(LN. \) Which equation can be used to find the length of AS?

1)
$$\frac{LS}{AS} = \frac{AS}{SN}$$
 3) $\frac{AS}{SN} = \frac{AS}{LS}$

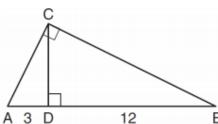
3)
$$\frac{AS}{SN} = \frac{AS}{LS}$$

2)
$$\frac{AN}{LN} = \frac{AS}{LS}$$
 4) $\frac{AS}{LS} = \frac{LS}{SN}$

4)
$$\frac{AS}{LS} = \frac{LS}{SN}$$

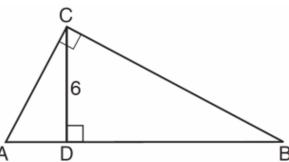


- 3. The accompanying diagram shows a 24-foot ladder leaning against a building. A steel brace extends from the ladder to the point where the building meets the ground. The brace forms a right angle with the ladder. If the steel brace is connected to the ladder at a point that is 10 feet from the foot of the ladder, which equation can be used to find the length, x, of the steel brace?
 - (1) $\frac{10}{x} = \frac{x}{14}$


(3) $10^2 + x^2 = 14^2$

(2) $\frac{10}{x} = \frac{x}{24}$

(4) $10^2 + x^2 = 24^2$


4. In the diagram below of right triangle ABC, altitude \overline{CD} is drawn to hypotenuse \overline{AB} . If AD = 3 and DB = 12, what is the length of altitude CD?

5. In right triangle ABC below, \overline{CD} is the altitude to hypotenuse \overline{AB} . If CD = 6 and the ratio of AD to AB is 1:5,

determine and state the length of \overline{BD} .

6. What is the solution set for the equation $x^2 - 5x = 6$?

https://www.youtube.com/watch?v=9d9fjv5WwBQ