Name: \qquad
UNIT 5
Date: \qquad

LESSON 2

AIM: WHAT ARE THE PROPERTIES OF SIMILAR TRIANGLES?

Do Now: Are these shapes similar? Explain your reasoning.

NOTES:

- Rigid motions produce \qquad figures. Corresponding side and angle measures are
\qquad !
- Dilations produce \qquad figures. Corresponding angle measures are \qquad but
- corresponding side measures are \qquad !
- Corresponding \qquad are also in proportion! In other words, perimeters share the same scale factor as the corresponding side lengths.
- To identify corresponding sides and angles, follow the order of the letters!

If $\triangle A B C \sim \triangle D E F$, identify all corresponding sides and angles.

$$
\frac{A B}{D E}=\frac{\square}{D F}
$$

$$
\frac{E F}{\square}=\frac{D E}{A B}
$$

$$
\frac{A C}{B C}=\frac{\square}{E F}
$$

SIDES	ANGLES

1. In the triangle below, $\triangle A B C \sim \Delta E F G, \Varangle C=4 x+30$ and $\Varangle G=5 x+10$. Determine the value of x.

2. In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $\overline{A B}=3, \overline{B C}=5.5, \overline{A C}=4.5, \overline{D E}=6, \overline{F D}=9$ and $\overline{E F}=11$. Which relationship must always be true?
1) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

3. In the diagram below, $\triangle A B C \sim \triangle D E F$, what is the value of $\overline{A B}$?

4. In the movie, Innerspace (1987), Dennis Quaid is miniaturized and accidentally injected into a nervous grocery clerk, played by Martin Short. Quaid travels throughout the human body in a miniaturized ship. If the dimensions of the ship and its miniaturized version are depicted by the triangles below, find the height of the original ship.

5. In the diagram below, $\triangle Q R S \sim \triangle L M N$, find the length of $\overline{M L}$.

6. Given the labeled diagram, find x.

7. Given that $\triangle A B C \sim \triangle D E F$, find the length of $\overline{A B}$ and $\overline{D F}$.

8. Two triangles are similar. The lengths of the sides of the smaller triangle are 3,5 , and 6 , and the length of the longest side of the larger triangle is 18 . What is the perimeter of the larger triangle?
9. On a scale drawing of a new school playground, a triangular area has sides with lengths of 8 centimeters, 15 centimeters, and 17 centimeters. If the triangular area located on the playground has a perimeter of 120 meters, what is the length of its longest side?
\qquad Date: \qquad
UNIT 5

LESSON 2

HOMEWORK

1) Are the triangles shown below similar? Justify your answer.	2) If $\triangle A B C \sim \triangle Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?
3) Given: $\triangle A B C \sim \triangle D E F$, solve for x and y.	4) The base of an isosceles triangle is 5 and its perimeter is 11 . The base of a similar isosceles triangle is 10. What is the perimeter of the larger triangle?

5) Delroy's sailboat has two sails that are similar triangles. The larger sail has sides of 10 feet, 24 feet, and 26 feet. If the shortest side of the smaller sail measures 6 feet, what is the perimeter of the smaller sail?
