Name:		Date:	
UNIT 5		LESSON 12	
AIM: THE	PRODUCT OF THE MEANS EQUALS THE	PRODUCT OF THE EXTREMES	
Do Now: Simplify the follo	wing fractions		
a) $\frac{2}{6}$	b) $\frac{5}{15}$	c) $\frac{10}{35}$	
WHY can we do this?			

•	We solve proportions by		. We can do this
	because the product of the _	equals the product of the	

When triangles are similar, angles are _____ and sides are in

.

• Therefore, to prove triangles are similar, we need to state ______ are congruent using

Once we have similar triangles we can say corresponding ______ or similar triangles are in ______.

• Finally, we can say the product of the ______ equals the product of the ______

• How will we know if our proof involves us stating the product of the means equals the product of the extremes? The prove statement will be a ______.

ORDER MATTERS!

	PROVE STATEMENT	REASON
1.	Similarity Statement	$AA \cong AA$
	$\Delta ABC \sim \Delta DEF$	
2.	Proportion	Corresponding parts of similar triangles are in proportion.
	$\frac{AB}{BC} = \frac{DE}{EF}$	
3.	Product	The product of the means equals the product of the
	BCxDE = ABxEF	extremes

1. Given: Q is a point on \overline{PR} , S is a point on \overline{TR} , \overline{QS} is drawn $\bigcirc RPT @ \bigcirc RQS$

Prove: $PR \cdot RS = RT \cdot QR$

What proportion can we set up that will give us this product?

STATEMENT	REASON

2. Given: $\overline{DC} \perp \overline{BC}$, $\overline{AB} \perp \overline{BC}$ Prove: $AB \cdot EC = EB \cdot DC$

What proportion can we set up that will give us this product?

STATEMENT	REASON

3. Given: \overline{AE} and \overline{BD} intersect at *C*, and $\overline{AB} / / \overline{ED}$ Prove: $AB \cdot DC = BC \cdot ED$

What proportion can we set up that will give us this product?

STATEMENT	REASON

4. Given: ΔSRT with $\overline{SR} \cong \overline{ST}$ $\overline{TE} \perp \overline{RS}$, $\overline{SD} \perp \overline{RT}$

Prove: $ER \cdot SD = TE \cdot DT$

What proportion can we set up that will give us this product?

Name:	
UNIT 5	

LESSON 12

HOMEWORK

1. For the following, fill in the missing pieces.

PRODUCT	$ER \cdot SD = TE \cdot DT$		$EB \cdot DC = AB \cdot EC$	
PROPORTION		$\frac{AD}{ED} = \frac{AB}{CB}$		
SIMILARITY STATEMENT				$\Delta PRT \sim \Delta QRS$

2. Given: In right triangle ABC,
$$\angle C = 90^\circ$$
, $DE \perp AC$

Prove:
$$\frac{AD}{ED} = \frac{AB}{CB}$$

What proportion can we set up that will give us this product?

STATEMENT	REASON