\qquad
\qquad

UNIT 5

AIM: THE PRODUCT OF THE MEANS EQUALS THE PRODUCT OF THE EXTREMES

Do Now: Simplify the following fractions
a) $\frac{2}{6}$
b) $\frac{5}{15}$
c) $\frac{10}{35}$

WHY can we do this?

- We solve proportions by \qquad
\qquad We can do this because the product of the \qquad equals the product of the \qquad !
- When triangles are similar, angles are \qquad and sides are in
\qquad .
- Therefore, to prove triangles are similar, we need to state \qquad are congruent using
\qquad .
- Once we have similar triangles we can say corresponding \qquad or similar triangles are in \qquad .
- Finally, we can say the product of the \qquad equals the product of the
\qquad !
- How will we know if our proof involves us stating the product of the means equals the product of the extremes? The prove statement will be a \qquad .

ORDER MATTERS!

	PROVE STATEMENT	REASON
1.	Similarity Statement	$A A \cong A A$
2.	$\Delta A B C \sim \triangle D E F$	Corresponding parts of similar triangles are in proportion.
	$\frac{A B}{B C}=\frac{D E}{E F}$	
3.	$B C x D E=A B x E F$	The product of the means equals the product of the

1. Given: Q is a point on $\overline{P R}, \mathrm{~S}$ is a point on $\overline{T R}, \overline{Q S}$ is drawn $R P T \quad R Q S$

Prove: $P R \cdot R S=R T \cdot Q R$
What proportion can we set up that will give us this product?

What triangles do we need to prove are similar first?
2. Given: $\overline{D C} \perp \overline{B C}, \overline{A B} \perp \overline{B C}$

Prove: $A B \cdot E C=E B \cdot D C$
What proportion can we set up that will give us this product?
What triangles do we need to prove are similar first?

STATEMENT

REASON
3. Given: $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\overline{A B} / / \overline{E D}$

Prove: $A B \cdot D C=B C \cdot E D$
What proportion can we set up that will give us this product?

What triangles do we need to prove are similar first?
4. Given: $\Delta S R T$ with $\overline{S R} \cong \overline{S T}$

$$
\overline{T E} \perp \overline{R S}, \overline{S D} \perp \overline{R T}
$$

Prove: $E R \cdot S D=T E \cdot D T$
What proportion can we set up that will give us this product?
What triangles do we need to prove are similar first?

Name: \qquad

UNIT 5

Date:
LESSON 12

HOMEWORK

1. For the following, fill in the missing pieces.

PRODUCT	$E R \cdot S D=T E \cdot D T$		$E B \cdot D C=A B \cdot E C$	
PROPORTION		$\frac{A D}{E D}=\frac{A B}{C B}$		
SIMILARITY STATEMENT				$\Delta P R T \sim \Delta Q R S$

2. Given: In right triangle $A B C, \angle C=90^{\circ}, \overline{D E} \perp \overline{A C}$ Prove: $\frac{A D}{E D}=\frac{A B}{C B}$
What proportion can we set up that will give us this product?

What triangles do we need to prove are similar first?

STATEMENT	REASON

