\qquad
\qquad

AIM: CORRESPONDING SIDES OF SIMILAR TRIANGLES ARE IN PROPORTION

Do Now: In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$.
If $A E=3, E D=6$, and $D C=15$, find the length of $\overline{E B}$.

NOTES:

- WHY were you able to set up a proportion and solve for the missing side length in the do now?
- WHAT made the triangles similar in the do now?
- Therefore, after you prove triangles are similar using \qquad , it can be stated that
\qquad of \qquad are
\qquad !
- How will you know if a proof requires you to state that corresponding sides of similar triangles are in proportion? The prove statement will be a \qquad .
- Before you can state that corresponding sides of similar triangles are in proportion, you must always prove triangles are \qquad using \qquad first!

1. Given: Q is a point on $\overline{P R}, \mathrm{~S}$ is a point on $\overline{T R}, \overline{Q S}$ is drawn $R P T \quad R Q S$

Prove: $\frac{P R}{R T}=\frac{Q R}{R S}$
What triangles do we need to prove are similar first?

3. Given: $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\overline{A B} / / \overline{E D}$ Prove: $\frac{A B}{B C}=\frac{E D}{D C}$
What triangles do we need to prove are similar first?

4. Given: $\triangle D L W$ is a right triangle
$\overline{K C} \perp \overline{L W}$
Prove: $\frac{D W}{L W}=\frac{C W}{K W}$
What triangles do we need to prove are similar first?

5. Given: $\triangle S R T$ with $\overline{S R} \cong \overline{S T}$

$$
\overline{T E} \perp \overline{R S}, \overline{S D} \perp \overline{R T}
$$

Prove: $E R \times S D=T E \times D T$
What triangles do we need to prove are similar first?

SUMAMRY- ORDER MATTERS!

	PROVE STATEMENT	REASON
1.	Similarity Statement	$A A \cong A A$
2.	$\triangle A B C \sim \triangle D E F$	Corresponding sides of similar triangles are in proportion.
	$\frac{A B}{B C}=\frac{D E}{E F}$	

\qquad

HOMEWORK

1. In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2, S Q=5$, and $T R=5$. What is the length of $\overline{Q R}$?

2. Given the pairs of triangles, determine if the triangles are similar or not, explain.

3. Given: In right triangle $A B C, \angle C=90^{\circ}, \overline{D E} \perp \overline{A C}$

Prove: $\frac{A D}{E D}=\frac{A B}{C B}$
What triangles do we need to prove are similar first?

