UNIT 4 REVIEW: QUADRILATERALS

1. What is the difference between the sum of the measures of the interior angles of a regular hexagon and the sum of the measures of the exterior angles of a regular hexagon?
1) 36
2) 72
3) 360
4) 180
3. A parallelogram must be a rectangle if its diagonals
1) bisect each other.
2) bisect the angles to which they are drawn.
3) are perpendicular to each other.
4) are congruent.
5. Which of the following reasons is valid for proving a quadrilateral is a parallelogram?
1) Diagonals bisect angles
2) All sides are congruent
3) One pair of opposite sides are parallel
4) One pair of opposite sides are both parallel and congruent
7. Which statement is false?
1) All parallelograms are quadrilaterals.
2) All rectangles are parallelograms.
3) All squares are rhombuses.
4) All rectangles are squares.
9. Which of the following reasons is valid for proving a parallelogram is a rectangle?
(1) Diagonals bisect angles
(2) Both pairs of opposite sides are congruent
(3) Diagonals are congruent
(4) Diagonals are perpendicular
10. The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?
1) 5
2) 6
3) 3
4) 4
4. Which statements describe the properties of a trapezoid?
1) The bases are parallel.
2) The diagonals are congruent.
3) The opposite angles are congruent.
4) The base angles are congruent.
6. Which of the following reasons is NOT valid for proving a parallelogram is a rhombus?
(1) Diagonals bisect angles
(2) All sides are congruent
(3) Diagonals are congruent
(4) Diagonals are perpendicular
7. The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus
10. Which of the following reasons is valid for proving a quadrilateral is a trapezoid?
1) Diagonals bisect angles
2) Both pairs of opposite sides are congruent
3) Both pairs of opposite sides are parallel
4) At least one pair of opposite sides are parallel
11. In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{D B}$ intersect at E. Which is always true?
(1) $\triangle A E D$ is isosceles
(2) $\triangle A B D$ is a right triangle
(3) $\overline{D B} \cong \overline{A C}$
(4) $\triangle A B C \cong \triangle C D A$
12. In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E. Which expression is not always true?
1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

13. Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below. Which information is not enough to prove $A B C D$ is a parallelogram?
1) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
4) $\overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

14. In the accompanying diagram of parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{D B}$ intersect at $E, A E=3 x-4$, and $E C=x+12$. What is the value of $A C$?

15. In Rectangle $A B C D$, the lengths of diagonal $A C$ and $B D$ are represented by $2 x+3$ and $4 x-11$. Determine the value of x.
16. In the accompanying diagram of rhombus $A B C D$, diagonal $\overline{B D}$ is drawn and $\angle C=50^{\circ}$. Determine $m \angle A D B$.

17. In isosceles trapezoid $A B C D, \overline{A D} \cong \overline{B C}$. If $D C=36, A B=20$, and $A D=17$ what is the length of the altitude of the isosceles trapezoid?

18. In rhombus TIGE, diagonals TG and IE intersect at R. The perimeter of TIGE is 52 , and TG $=10$. What is the length of diagonal IE?

19. The diagram below shows parallelogram LMNO with diagonal $\mathrm{LN}, \mathrm{m} \angle \mathrm{M}=118^{\circ}$, and $\mathrm{m} \angle \mathrm{LNO}=22^{\circ}$. Find $\mathrm{m} \angle \mathrm{NLO}$ and explain how you found your answer.

20. A cow crossing sign, in the shape of a square, is to be mounted to a post by placing a bolt through the center, P, of the sign. If $A C=10$ inches, what is the exact distance from A to B, in simplest radical form?

21. In the diagram below, Parallelogram $A B C D$ has $m<B=120$ and $\angle D A E=40$. What is the measure of $<B A E$? Explain.

22. Given: Parallelogram $F L S H$, diagonal $\overline{F G A S}, \overline{L G} \perp \overline{F S}, \overline{H A} \perp \overline{F S}$. Prove: $\triangle L G S \cong \triangle H A F$

STATEMENT	REASON
$\overline{H A} \perp \overline{F S}$.	1.
2. $\Varangle L G S \cong \Varangle H A F$	2.
3. $\overline{L S} \cong \overline{F H}$	3.
4. $\Varangle L S F \cong \Varangle H F S$	4.
$5 . \triangle L G S \cong \triangle H A F$	

23. Given: E is the midpoint of $\overline{A C}$

$$
\begin{aligned}
& \overline{B E} \cong \overline{E D} \\
& \overline{A B} \perp \overline{B C}
\end{aligned}
$$

Prove: $A B C D$ is a rectangle.

STATEMENT	REASON
1. E is the midpoint of $\overline{A C} ; \overline{B E} \cong \overline{E D} ; \overline{A B} \perp \overline{B C}$	1.
2. $\overline{A E} \cong \overline{E C}$	2.
3. Quadrilateral $A B C D$ is a parallelogram	3.
4. $\Varangle A B C$ is a right angle	4.
5. Quadrilateral $A B C D$ is a rectangle	5.

24. Given: $\overline{A O}$ is the median to $\overline{B D}$
O is the midpoint of $\overline{A C}$
$\overline{A C} \perp \overline{B D}$

STATEMENT	
$\frac{1 . \overline{A O} \text { is the median to } \overline{B D} ; \mathrm{O} \text { is the midpoint of } \overline{A C} ;}{}$ REASON	
2. $\overline{B O} \cong \overline{O D}$	1.
3. $\overline{A O} \cong \overline{O C}$	2.
4. Quadrilateral $A B C D$ is a parallelogram	Quadrilateral $A B C D$ is a rhombus
5iven: Parallelogram $A N D R ; \overline{E R} \cong \overline{N W}$	Prove: $\triangle A N W \cong \triangle D R E$

26. Given: AH bisects MT at Q and $\Varangle \mathrm{TMA} \cong \Varangle \mathrm{MTH}$

Prove: MATH is a parallelogram

27. Given: Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D^{F}} \perp \overline{B F C}, \overline{B E} \cong \overline{F D}$. Prove $A B C D$ is a rhombus.
**HINT: Prove that $\triangle B C E \cong \triangle D C F$ first in order to get consecutive sides congruent. Look for a reflexive angle! **

