LESSON 5

UNIT 4

AIM: HOW DO WE PROVE A QUADRILATERAL IS A PARALELLOGRAM?

Do Now: Given the parallelogram below, find the vales of x, y and z.

REASONS TO PROVE A PARALLEOGRAM				
1.				
2.				
3.				
4.				
5.				
3.				

1. In quadrilateral *BLUE* shown below, $\overline{BE} \cong \overline{UL}$.

Which information would be sufficient to prove quadrilateral *BLUE* is a parallelogram?

3)
$$\overline{BE} \cong \overline{BL}$$

4)
$$\overline{LU} \cong \overline{EU}$$

- 2. Quadrilateral *ABCD* has diagonals \overline{AC} and \overline{BD} . Which information is *not* sufficient to prove *ABCD* is a parallelogram?
- 1) \overline{AC} and \overline{BD} bisect each other.

2)
$$\overline{AB} \cong \overline{CD}$$
 and $\overline{BC} \cong \overline{AD}$

3)
$$\overline{AB} \cong \overline{CD}$$
 and $\overline{AB} \parallel \overline{CD}$

4)
$$\overline{AB} \cong \overline{CD}$$
 and $\overline{BC} \parallel \overline{AD}$

1. Given: <u>ABCD is</u> a quadrilateral

 $\overline{AB}\cong \overline{CD}$

 $\angle 1 \cong \angle 2$

Prove: ABCD is a parallelogram.

STATEMENT	REASON

2. Given: PQRS is a quadrilateral

∠1 ≅ ∠2

∠3 ≅ ∠4

Prove: PQRS is a parallelogram.

STATEMENT REASON

UNIT 4

LESSON 5

HOMEWORK

1. Quadrilateral *ABCD* with diagonals \overline{AC} and \overline{BD} is shown in the diagram below.

Which information is *not* enough to prove *ABCD* is a parallelogram?

- 1) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{DC}$
- 2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$
- 3) $\overline{AB} \cong \overline{CD} \text{ and } \overline{BC} \parallel \overline{AD}$
- 4) $\overline{AB} \parallel \overline{DC}$ and $\overline{BC} \parallel \overline{AD}$

- 2. Quadrilateral *MATH* has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral *MATH* is always true?
- 1) $\overline{MT} \cong \overline{AH}$
- 2) $\overline{MT} \perp \overline{AH}$
- 3) $\angle MHT \cong \angle ATH$
- 4) $\angle MAT \cong \angle MHT$

3. Given: ΔGKL $\underline{LM} \text{ is a median to } \overline{KG}$ $LM \cong \overline{MJ}$

Prove: GJKL is a parallelogram

STATEMENT