Name: \qquad UNIT 4

Date: \qquad
LESSON 1

AIM: HOW DO WE DETERMINE THE MEASURE OF INTERIOR AND EXTERIOR ANGLES OF A POLYGON?
Do Now: RECALL! Use the table below to find the angles of rotation for the following figures.

	Equilateral Triangle	Square	Regular Pentagon	Regular Hexagon
\# of sides				
Angles of Rotation				

VOCABULARY

WORD	DEFINITION	IMAGE
Polygon		Polygons ${ }^{\text {a }}$ (Non-polygons
		(©) Δ
Regular Polygon		Regular Pentagon Irregular Pentagon
Interior Angle		
Exterior Angle		

Equilateral Triangle

Square

Regular Pentagon

Regular
Nonagon

Regular
Hexagon

POLYGON	NUMBER OF SIDES	NUMBER OF TRIANGLES	SUM OF INTERIOR ANGLE MEASURES
Triangle	3	1	$(1) 180^{\circ}=180^{\circ}$
Quadrilateral	4	2	$(2) 180^{\circ}=360^{\circ}$
Pentagon			$(\quad) 180^{\circ}=$
Hexagon			$(\quad) 180^{\circ}=$
Decagon			$\left(180^{\circ}=\right.$

The pattern developed in the example above, is consistent for ALL polygons.

The SUM of the Interior Angles of any Polygon	ONE Interior Angle of a Regular Polygon	ONE Exterior angle of a Regular Polygon
$\mathbf{1 8 0 (n - 2)}$	$\frac{\mathbf{1 8 0}(n-2)}{n}$	$\frac{\mathbf{3 6 0}}{n}$

** where \boldsymbol{n} is the number of sides of the polygon**

Interior angles in regular polygons

If a shape is regular, all of its angles are the same size.

If the polygon has n sides, the angle sum is $(n-2) \times 180$.

Divide this answer by n to get the size of one angle.

One angle $=720 \div 6$ $=120^{\circ}$

The interior angle and the exterior angle of a shape

$$
I+E=180^{\circ}
$$

This is because angles on a straight line equal 180°.

If $I=60^{\circ}$ then $E=120^{\circ}$ $60^{\circ}+120^{\circ}=180^{\circ}$.

If the shape is regular, then each angle is the same size.

You can find the size of one angle by dividing 360° by the number

PRACTICE!

1. Determine, in degrees, the measure of each interior angle of a regular octagon.
2. The sum of the interior angles of a regular polygon is 540°. Determine and state the number of degrees in one interior angle of the polygon.
3. What is the measure of each interior angle of a regular hexagon?
1) 60°
2) 120°
3) 135°
4) 270°
6. A stop sign in the shape of a regular octagon is resting on a brick wall, as shown in the accompanying diagram.

What is the measure of angle x ?

1) 45°
2) 60°
3) 120°
4) 135°
8. What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?
1) 36
2) 72
3) 108
4) 180

9. The sum of the interior angles of a regular polygon is 720°. How many sides does the polygon have? 1) 8 2) 6 3) 5 4) 4	10. Melissa is walking around the outside of a building that is in the shape of a regular polygon. She determines that the measure of one exterior angle of the building is 60°. How many sides does the building have? 1) 6 2) 9 3) 3 4) 12
11. For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles? 1) hexagon 2) pentagon 3) quadrilateral 4) triangle	12. A regular polygon with an exterior angle of 40° is a 1) pentagon 2) hexagon 3) nonagon 4) decagon
13. The pentagon in the diagram below is formed by five rays. What is the degree measure of angle x ? 1) 72 2) 96 3) 108 4) 112	14. The measures of five of the interior angles of a hexagon are $150^{\circ}, 100^{\circ}, 80^{\circ}, 165^{\circ}$, and 150°. What is the measure of the sixth interior angle? 1) 75° 2) 80° 3) 105° 4) 180°

