UNIT 3 STUDY SHEET – TRIANGLE CONGRUENCE

TOPIC #1: METHODS TO PROVE TRIANGLES CONGRUENT:

In order to prove triangles are congruent, you must prove <u>THREE</u> corresponding parts are congruent!

METHODS THAT <u>CANNOT</u> BE USED TO PROVE TRIANGLES ARE CONGRUENT:

VISUAL FREEBIES!

TOPIC #2: CPCTC

CORRESPONDING **P**ARTS OF **C**ONGRUENT **T**RIANGLES ARE **C**ONGRUENT!

PARTS = SIDES AND ANGLES!

HOW DO WE KNOW WHEN TO SAY "CPCTC?" When the PROVE statement is not a triangle congruence statement!

****ORDER OF STATEMENTS****

1.)	TRIANGLE CONGRUENCE STATEMENT	ΡΟΣΤΙΙΔΙΤΕ			
±.,		10010.212			
	Example: ADCD or AACD	European las III av III			
	Example: $\Delta D \cup B \doteq \Delta A \cup B$	Example: $\Pi L \doteq \Pi L$			
2.)	CORRESOPNDING "PARTS" – ANGLES OR SIDES	CPCTC			
1	Example: $\overline{DR} \simeq \overline{RA}$	Example: CPCTC			
1	$Exumple \cdot D D = D D$	Exumple. Ci Ci C			
1					
•		DEEDWEROW.			
3.)	PROVESTATEMENT	DEFINITION			
1	Example: B is the midpoint of DA	Example: A <i>midpoint</i> creates two congruent segments			
	· · · · · · · · · · · · · · · · · · ·				

TOPIC #3: COMMON PROOF STATEMENTS

POSTULATE/FACT	HOW TO RECOGNIZE IT/WHAT TO SAY	EXAMPLE
Reflexive Property	Where the colors overlap/the side or angle the	P
	triangles share	
		СВ
	REASON: Reflexive Property	A
Vertical Angles	The bowties/The "X"	$\measuredangle AOB \cong \measuredangle COD$
	<i>REASON:</i> Vertical angles are congruent	
Parallel Lines \rightarrow	The "Z"!	 ≰1 ≅ ≰2
Alternate Interior		A B
Angles	<i>REASON:</i> When two parallel lines are cut by a transversal, alternate interior angles are congruent	
Perpendicular	Follow the segments to see intersection	If $\overline{AB} \perp \overline{AE}$, the right angle would be at A
Lines→ Right Angles	If they share the same letter, that's where the	If $\overline{DE} \perp \overline{AE}$, the right angle would be at E
	right angle goes!	$4A \cong 4E$
	REASON: Perpendicular lines form <u>CONGRUENT</u> right angles	A C F
ADDITION PROPERTY	Given two small parts of a side	Given: $\overline{AD} = \overline{CE} \text{ and } \overline{DB} + \overline{EB}$ $\overline{AB} = \overline{BC}$ $\overline{AB} = \overline{AD} + \overline{DB}$ $\overline{BC} = \overline{CE} + \overline{EB}$ B A C
SUBTRACTION PROPERTY	Given a large part and a small part of a side	Given: $\overline{AD} = \overline{CB}$ and $\overline{DE} = \overline{CF}$ $\overline{AE} = \overline{AD} - \overline{DE}$ $\overline{FB} = \overline{BC} - \overline{CF}$ $\overline{FB} = \overline{BC} - \overline{F}$

Midpoint	Two "tick" marks only go on the segment named	C is the midpoint of \overline{AE}
	after the word midpoint.	
	REASON: A midpoint creates two congruent	
	segments	I
Segment Bisector	Two "tick" marks only go on the segment	\overrightarrow{CD} bisects \overrightarrow{AB} at P
	named after the word bisect.	
		Δc
	REASON: A bisector creates two congruent	\backslash
	segments	
		A B
		\overline{AD} and \overline{CB} bisect each other at E
		₹ F B
		\times ×
		Ę
		\times
		C G G
Angle Bisector	The "arc" marks only go on the angle named	\overline{AC} bisects $\angle BCD$
	after the word bisect.	R
	<i>REASON</i> : A bisector creates two congruent	
	angles	
Supplements	∡1 + ∡3 = 180°	If $If \ne 1 \cong 42$, then $43 \cong 44$
	$42 + 44 = 180^{\circ}$	ç
	REASON: Linear pairs are supplementary, therefore	
		3
	$43 \cong 44$	\overrightarrow{B} 4 \overrightarrow{D}^2
	REASON: Supplements of congruent angles are	
	congruent	
Isosceles Triangles	When given two congruent sides, you can	ΔLMN is an Isosceles Trianale
	assume the base angles are also congruent.	$\overline{LM}\cong\overline{NM}$
		$\measuredangle L \cong \measuredangle N$
	KEASUN: Isosceles triangles have two congruent	M
	congruent sides.	$\checkmark $
		<u>_</u> N