\qquad

UNIT 3: TRIANGLE CONGRUENCY QUIZ REVIEW

1.

In the accompanying diagram, $\overline{A B}$ and $\overline{C D}$ intersect at E, E is the midpoint of $\overline{A B}$, and $\angle A \cong \angle B$.

Which statement can be used to prove
$\triangle A D E \cong \triangle B C E$
(1) $\mathrm{ASA} \cong \mathrm{ASA}$
(3) $\mathrm{SSS} \cong$ SSS
(2) $\mathrm{HL} \cong \mathrm{HL}$
(4) $\mathrm{SAS} \cong S A S$
3. In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$. To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?
(1) $\overline{G E} \cong \overline{L D}$
(2) $\overline{A G} \cong \overline{O L}$
(3) $\angle A G E \cong \angle O L D$
(4) $\angle A E G \cong \angle O D L$

5. Which statements could be used to prove that $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are congruent?
(1) $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}, \overline{B C} \cong \overline{B^{\prime} C^{\prime}}$, and $\angle A \cong \angle A^{\prime}$
(2) $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}, \angle A \cong \angle A^{\prime}$, and $\angle C \cong \angle C^{\prime}$
(3) $\angle A \cong \angle A^{\prime}, \angle B \cong \angle B^{\prime}$, and $\angle C \cong \angle C^{\prime}$
(4) $\angle A \cong \angle A^{\prime}, \overline{A C} \cong \overline{A^{\prime} C^{\prime}}$, and $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$
7. The line segment $\overline{B D}$ is the median and altitude of $A B C$. Which of the following statements must be false?
(1) $\overline{B D}$ bisects $\overline{A C}$.
(2) $\triangle B D A$ is a right triangle.
(3) $m \quad A=90$.
(4) B is equidistant from A and C.
2. Given: $\overline{A B} \cong \overline{D C}$ and $\angle A \cong \angle D$

Which of the following methods can be used to prove that $\triangle A B C \cong \triangle D C B$?
(1) Side-Angle-Side (SAS)
(2) Angle-Side-Angle (ASA)

(3) Side-Side-Side (SSS)
(4) There is insufficient information to determine if the triangles are congruent.
4. In the diagram below, $\triangle A E C \cong \triangle B E D$. Which statement is not always true?
(1) $\overline{A C} \cong \overline{B D}$
(2) $\overline{C E} \cong \overline{D E}$
(3) $\angle E A C \cong \angle E B D$
(4) $\angle A C E \cong \angle D B E$

6. In the diagram below, $\triangle X Y V \cong \triangle T S V$.

Which statement can not be proven?
(1) $\angle X V Y \cong \angle T V S$
(2) $\angle V Y X \cong \angle V U T$
(3) $\overline{X Y} \cong \overline{T S}$
(4) $\overline{Y V} \cong \overline{S V}$

8. In $\triangle A B C$ and $\triangle D E F, \overline{A B} \quad \overline{D E}$, \& $A \quad D$. In order to prove $\triangle A B C \cong \triangle D E F$ using ASA, we need to prove that
(1) $B \quad E$
(2) $\angle C \cong \angle E$
(3) $\overline{B C} \cong \overline{E F}$
(4) $\overline{A C} \cong \overline{D F}$
9. In which triangles could you efficiently prove $\Delta 1 \cong \Delta 2$ using the HL Theorem?
(a) II only
(b) III only
(c) II and III
I.

II.

III.

(d) I only
10. Write the method that is being illustrated in the following triangles to prove congruency. Then, state if that is a valid method.
(i.
11. Describe method AND the rigid motion(s) which make the two triangles congruent:

$\mathrm{a} . \triangle \mathrm{ABC} \cong \triangle \mathrm{WER}$	$\mathrm{b} . \triangle \mathrm{ABD} \cong \triangle \mathrm{CBD}$	$\mathrm{c} . \Delta \mathrm{THJ} \cong \triangle \mathrm{RJH}$

12. Directions: Fill in the question marks in the proof below.

Given: $\overline{B C} \cong \overline{E C} \& \overline{A C} \cong \overline{D C}$
Prove: $\overline{B A} \cong \overline{E D}$

Statements	Reasons
1. $\overline{B C} \cong \overline{E C}$	1. given
$\overline{A C} \cong \overline{D C}$	
2. $\angle B C A \cong \angle E C D$	2. Vertical angles are congruent.
3. $\Delta B C A \cong A E C D$	3. ?
4. $\overline{B A} \cong \overline{E D}$	4. ?

13. Given: $\overline{B D}$ and $\overline{A E}$ bisect each other.

Prove: $\triangle A B C \cong \triangle E D C$

STATEMENTS

(b) Describe the rigid motion(s) that would map one triangle onto the other.
14. Given: $\overline{A D}$ bisects $\overline{B C}$ at $E, \overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}$

Prove: $\triangle A B E \cong \triangle D C E$

(b) Describe the rigid motion(s) that would map one triangle onto the other.
15. Given: $\overline{V W} \perp \overline{W X}, \overline{Z Y} \perp \overline{Y X}, \overline{V W} \cong \overline{Z Y}, X$ is the midpoint of $\overline{W Y}$.

Prove: $\triangle V W X \cong \Delta Z Y X$

STATEMENTS
(b) Describe the rigid motion(s) that would map one triangle onto the other.

