Name:	Date:	
UNIT 3 QUIZ REVIEW		
1. In the accompanying diagram, \overline{AB} and \overline{CD} intersect at E, E is the midpoint of \overline{AB} , and $\angle A \cong \angle B$. A \longrightarrow E \longrightarrow B	2. Given: $\overline{AB} \cong \overline{DC}$ and $\angle A \cong \angle D$ Which of the following methods can be used to prove that $\triangle ABC \cong \triangle DCB$? (1) Side-Angle-Side (SAS)	
Which statement can be used to prove $\triangle ADE \cong \triangle BCE$ (1) ASA \cong ASA (3) SSS \cong SSS (2) HL \cong HL (4) SAS \cong SAS	 (2) Angle-Side-Angle (ASA) (3) Side-Side-Side (SSS) (4) There is insufficient information to determine if the triangles are congruent. 	
 3. In the diagram below of △AGE and △OLD, ∠GAE ≅ ∠LOD, and AE ≅ OD. To prove that △AGE and △OLD are congruent by SAS, what other information is needed? (1) GE ≅ LD (2) AG ≅ OL (3) ∠AGE ≅ ∠OLD (4) ∠AEG ≅ ∠ODL 	4. In the diagram below, $\triangle AEC \cong \triangle BED$. Which statement is <i>not</i> always true? (1) $\overrightarrow{AC} \cong \overrightarrow{BD}$ (2) $\overrightarrow{CE} \cong \overrightarrow{DE}$ (3) $\angle EAC \cong \angle EBD$ (4) $\angle ACE \cong \angle DBE$	
 5. Which statements could be used to prove that △ABC and △A'B'C' are congruent? (1) AB ≅ A'B', BC ≅ B'C', and ∠A ≅ ∠A' (2) AB ≅ A'B', ∠A ≅ ∠A', and ∠C ≅ ∠C' (3) ∠A ≅ ∠A', ∠B ≅ ∠B', and ∠C ≅ ∠C' (4) ∠A ≅ ∠A', AC ≅ A'C', and BC ≅ B'C' 	6. In the diagram below, $\Delta XYV \cong \Delta TSV$. Which statement can <i>not</i> be proven? (1) $\angle XVY \cong \angle TVS$ (2) $\angle VYX \cong \angle VUT$ (3) $\overline{XY} \cong \overline{TS}$ (4) $\overline{YV} \cong \overline{SV}$ S T U	
 7. The line segment BD is the median and altitude of DABC. Which of the following statements must be false? (1) BD bisects AC. 	 8. In ΔABC and ΔDEF, AB @ DE, & ĐA @ ĐD. In order to prove ΔABC ≅ ΔDEF using ASA, we need to prove that (1) ĐB @ ĐE (2) ∠C ≅ ∠E 	
 (2) △BDA is a right triangle. (3) mDA = 90. (4) B is equidistant from A and C. 	(3) $\overline{BC} \cong \overline{EF}$ (4) $\overline{AC} \cong \overline{DF}$	

- 9. In which triangles could you efficiently prove $\Delta 1 \cong \Delta 2$ using the HL Theorem?
- (a) II only (b) III only (c) II and III (d) I only

10. Write the method that is being illustrated in the following triangles to prove congruency. Then, state if that is a valid method.

11. Describe method AND the rigid motion(s) which make the two triangles congruent:

a. $\triangle ABC \cong \triangle WER$	b. ∆ABD ≅ ∆CBD	c. $\Delta THJ \cong \Delta RJH$

12. Directions: Fill in the question marks in the proof below.

Given: $\overline{BC} \cong \overline{EC} \And \overline{AC} \cong \overline{DC}$	
Prove: $\overline{BA} \cong \overline{ED}$	
Statements	Reasons
1. $\overline{BC} \cong \overline{EC}$	1. given
$\overline{AC} \cong \overline{DC}$	
2. ∠BCA≅ ∠ECD	2. Vertical angles are congruent.
3. $△ BCA \cong △ ECD$	3?
4. $\overline{BA} \cong \overline{ED}$	4 ?

(b) Describe the rigid motion(s) that would map one triangle onto the other.

(b) Describe the rigid motion(s) that would map one triangle onto the other.

15. Given: $\overline{VW} \perp \overline{WX}$, $\overline{ZY} \perp \overline{YX}$, $\overline{VW} \cong \overline{ZY}$, X is the midpoint of \overline{WY} . Prove: $\Delta VWX \cong \Delta ZYX$

(b) Describe the rigid motion(s) that would map one triangle onto the other.