Name:			

UNIT 3

LESSON 8

AIM: WHAT DOES CPCTC MEAN? HOW CAN WE USE THIS IN PROOFS? (DAY 1)

Do Now:

a) If \overline{GR} and \overline{HP} bisect each other at M, is $\Delta GHM \cong \Delta RPM$? Explain what shortcut you would use to support your answer. (Mark the diagram and write the plan but you do not have to write the full proof!)

b) Identify all corresponding sides and angles.

CORRESPONDING SIDES	CORRESPONDING ANGLES

c) If $\overline{GH} = 2x + 7$ and $\overline{RP} = 4x - 14$, what is the value of x? Explain your answer.

CORRESPONDING PARTS OF CONGRUENT TRIANGLES ARE CONGRUENT!

- **"PARTS"** refer to ______ or _____.
- In other words, if we know ______ pieces of information to prove two triangles are congruent, we can prove that ______ corresponding sides and angles are congruent.
- CPCTC is used when our prove statement is asking us to find corresponding ______ or

_____ congruent within two triangles.

Before we can use CPCTC, we must first prove the triangles are _____!

EXAMPLE #1:

Given: $\overline{AB} \parallel \overline{CD}$ and $\overline{AB} \cong \overline{CD}$ Prove: $\overline{AD} \cong \overline{CB}$

STATEMENT

REASON

EXAMPLE #2:

Given: \overline{JN} and \overline{KM} bisect each other at *L* Prove: $\measuredangle J \cong \measuredangle N$

	STATEMENT	REASON
-		

EXAMPLE #3:

 $\overline{\text{Given: } M \text{ is the midpoint of } \overline{HP}, \angle H \cong \angle P$ Prove: $\overline{GM} \cong \overline{MR}$

2. Given: \overline{AE} bisects $\angle BCD$ and $\overline{BC} \cong \overline{DC}$ Prove: $\measuredangle B \cong \measuredangle D$ C -ED REASON STATEMENT