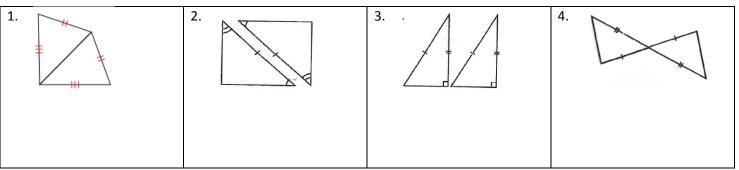
Name: _


Date:	
Dute.	

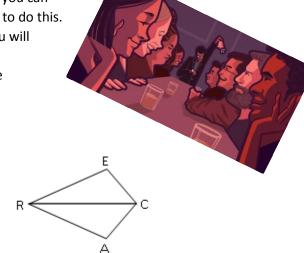
UNIT 3

LESSON 7

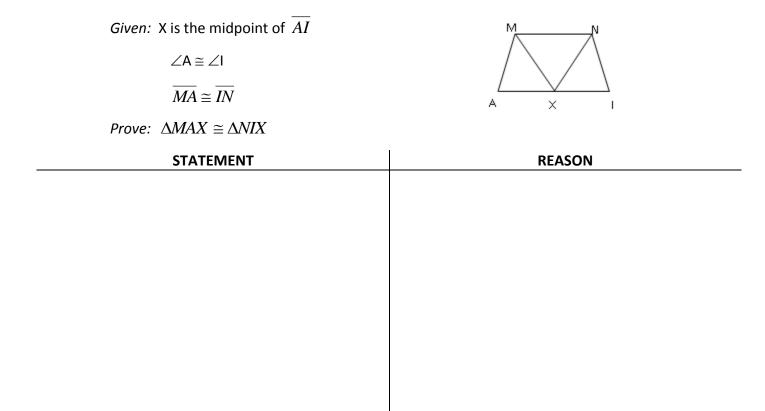
AIM: PROOF PRACTICE WITH ALL 5 SHORTCUTS!

Do Now: For the following, identify if the triangles are congruent by SSS, SAS, HL, ASA or AAS. NONE IS NOT AN OPTION!

PROOF "SPEED-DATING" INSTRUCTIONS:


- 1. Your goal is to become an expert on YOUR proof to the point where you can explain your example to another student. You will have ten minutes to do this.
- 2. The partner closer to the window will rotate around the room so you will have a new partner each turn.
- 3. You and your partner will exchange problems and check to see if the problems are answered correctly.

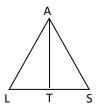
PROOF #1:


Given: $\overline{RA} \cong \overline{RE}$

$$\overline{EC} \cong \overline{AC}$$

Prove: $\Delta REC \cong \Delta RAC$

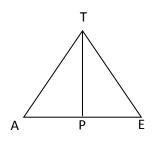
STATEMENT	REASON

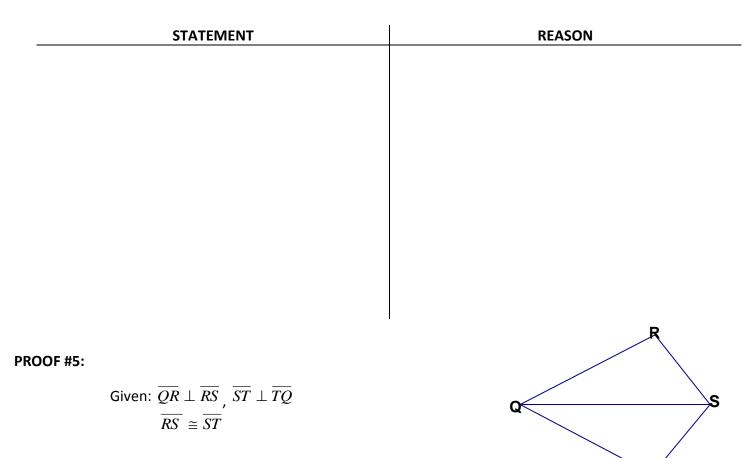

PROOF #3:

Given: \overline{AT} bisects $\angle LAS$

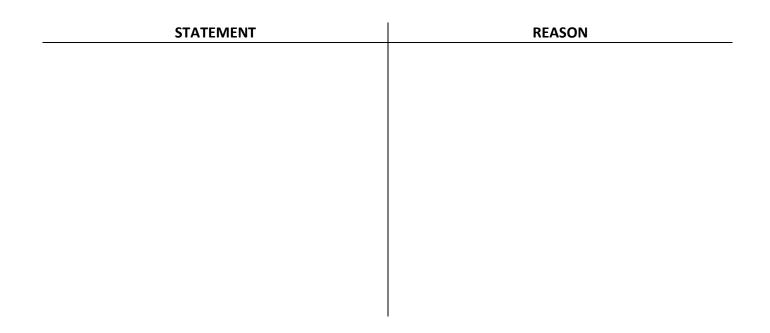
$$\overline{LA} \cong \overline{AS}$$

Prove: $\Delta ATL \cong \Delta ATS$





STATEMENT REASON


PROOF #4:

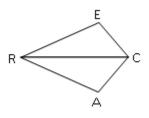
Given: $\overline{PT} \perp \overline{AE}$ $\overline{AT} \cong \overline{TE}$ Prove: $\Delta PAT \cong \Delta PET$

Prove:
$$\Delta QRS \cong \Delta QTS$$

PROOF #1:

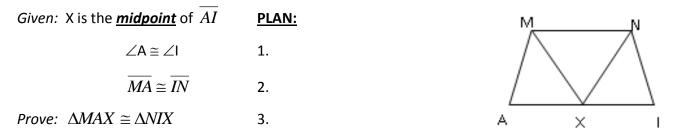
Given:
$$RA \cong RE$$
PLAN: $\overline{EC} \cong \overline{AC}$ 1.Prove: $\Delta REC \cong \Delta RAC$ 2.

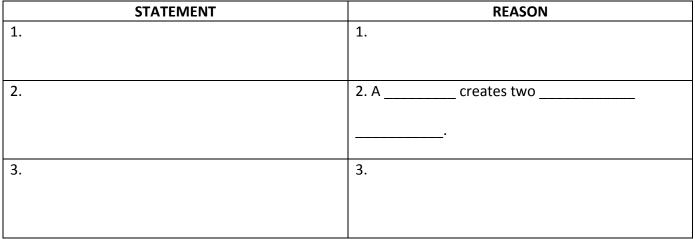
2.


3.

STATEMENT REASON 1. 1. 2. Reflexive Property 2. 3. 3.

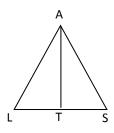
PROOF #1:


Given: $RA \cong RE$	PLAN:
$\overline{EC} \cong \overline{AC}$	1.
Prove: $\Delta REC \cong \Delta RAC$	2.



STATEMENT	REASON
1.	1.
2.	2. Reflexive Property
-	
3.	3.

PROOF #2:

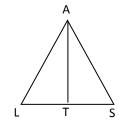

PROOF #2:

<i>Given:</i> X is the <i>midpoint</i> of \overline{AI}	<u>PLAN:</u>	MN
$\angle A \cong \angle I$	1.	$\wedge \wedge$
$\overline{MA} \cong \overline{IN}$	2.	
Prove: $\Delta MAX \cong \Delta NIX$	3.	A X I

STATEMENT	REASON
1.	1.
2.	2. A creates two
	·
3.	3.

PROOF #3:

Given: \overline{AT} bisects $\angle LAS$	<u>PLAN:</u>
$\overline{LA}\cong\overline{AS}$	1.
<i>Prove:</i> $\Delta ATL \cong \Delta ATS$	2.



STATEMENT	REASON
1.	1.
2.	2.
3.	3.
4.	4.

3.

PROOF #3:

Given: \overline{AT} <u>bisects</u> $\angle LAS$	PLAN:
$\overline{LA} \cong \overline{AS}$	1.
<i>Prove:</i> $\Delta ATL \cong \Delta ATS$	2.
	3.

STATEMENT	REASON
1.	1.
2.	2.
3.	3.
4.	4.

PROOF #4:

Given: $\overline{PT} \perp \overline{AE}$	PLAN:	T
$\overline{AT} \cong \overline{TE}$	1.	
<i>Prove:</i> $\triangle PAT \cong \triangle PET$	2.	
	3.	A P E
STATEMEN	TT	REASON

Ρ

PROC)F #5:		R
	Given: $\overline{QR} \perp \overline{RS}$, $\overline{ST} \perp \overline{TQ}$ $\overline{RS} \cong \overline{ST}$	PLAN:	
	$\overline{RS} \cong \overline{ST}$	1.	Q S
	Prove: $\overline{QT} \cong \overline{QR}$	2.	
		3.	
	STATEMENT		REASON