Name: \qquad
UNIT 3

Date: \qquad

LESSON 3

AIM: WHAT ARE THE SAS AND AAS SHORTCUTS TO PROVE TRIANGLES ARE CONGRUENT?

Do Now: In the diagram below, $\triangle A B C \cong \triangle X Y Z$.
Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$

4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

So far, we have learned three shortcuts to prove triangles are congruent without knowing all sides and angles:
\qquad
\qquad and \qquad .

We have also learned that \qquad can NOT be used to prove triangles are congruent.

BUT WAIT...THERE ARE TWO MORE!

The side $\underline{\text { MUST be included between the two sides }}$ *The side is $\underline{\text { NOT }}$ included between the two angles*

BEWARE! There is also one more that does NOT work... AAA. WHY?!

Angles can remain congruent while side lengths can change!

For each of the following, if possible, identify which postulate will prove these triangles congruent (ASA, AAS or Neither)
1)

3)

2)

4)

5)

6)

Based on the given information, determine what shortcut should be used and write a plan on how you would prove the triangles congruent.
6. Given: M is the midpoint of $\overline{H P}, \angle H \cong \angle P$

Prove: $\triangle G H M \cong \triangle R P M$

PLAN:

7. Given: $\overline{B D}$ bisects $A B C, \overline{B D} \quad \overline{A C}$

Prove: $A B D \quad C B D$

PLAN:

8. Given: $\overline{B C} / / \overline{A D}$ and $\angle A \cong \angle C$

Prove: $A B D \quad C D B$

PLAN:

SUMMARY:

- To prove triangles are congruent, you need at least \qquad pieces of information.
- The five "short cuts" to prove triangles are congruent are:

○ \qquad
\circ \qquad

○ \qquad

○ \qquad

○ \qquad

- Steps to proving triangles are congruent:
- Mark the diagram with \qquad information.
- Look for visual freebies (\qquad and \qquad
- Identify \qquad
- Write plan!

Name: \qquad
UNIT 3
Date: \qquad

LESSON 3

HOMEWORK

1. Using the given information, determine the shortcut used and write a plan

Given: $\angle A C B \cong \angle D C E \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E} C$ is the midpoint of $\overline{B E}$ Prove: $\triangle A B C \cong \triangle D E C$

PLAN:

2. In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$. Which method can be used to prove $\triangle A B C \cong \triangle D E F$?

1) SSS
2) SAS
3) ASA
4) HL

3. As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle A B C \cong \triangle A D C$?

1) SSS
2) $A A A$
3) SAS
4) AAS
4. In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle $D A E$ can be proved congruent to triangle $B C E$ by

1) $A S A$
2) SAS
3) SSS
4) HL

5. In the accompanying diagram of triangles $B A T$ and $F L U, \angle B \cong \angle F$ and $\overline{B A} \cong \overline{F L}$. Which statement is needed to prove $\triangle B A T \cong \triangle F L U$?
1) $\angle A \cong \angle L$
2) $\overline{A T} \cong \overline{L U}$
3) $\angle A \cong \angle U$

4) $\overline{B A} \| \overline{F L}$

6. In the diagram below of $\triangle A G E$ and $\triangle O L D, \angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?

1) $\overline{G E} \cong \overline{L D}$
2) $\overline{A G} \cong \overline{O L}$
3) $\angle A G E \cong \angle O L D$
4) $\angle A E G \cong \angle O D L$

