Name: \qquad
UNIT 3
Date: \qquad
LESSON 2
AIM: WHAT ARE THE SSS, SAS AND HL "SHORTCUTS" TO PROVE TRIANGLES ARE CONGRUENT?
Do Now: In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

RECALL:

- Basic rigid motions produce \qquad figures.
- Therefore, in order for triangles to be congruent all \qquad must be of equal length and all
\qquad must be of equal measure.
- BUT we do not need to know that ALL sides and ALL angles are congruent in order to identify congruent triangles! We can use 5 "shortcuts" to help us out! (Today, we will learn three of them!)

1. SSS Shortcut (Side-Side-Side)

2. SAS Shortcut (Side-Angle-Side)

*THE ANGLE MUST BE BETWEEN THE

SIDES!*
3. HL Shortcut (Hyptoenuse-Leg)

ONLY VALID IN RIGHT TRIANGLES!

BEWARE! There is a method that DOES NOT work - SSA (Side-Side-Angle) WHY?!

- There are $\mathbf{2}$ possible triangles that can be created with these conditions. It is clear that one of the possibilities does not produce a congruent triangle (same shape, different size)
- Therefore, you MUST only use the INCLUDED angle!

For each of the following, iidentify which postulate will prove these triangles congruent (HL, SSS, SAS, or none)

Based on the given information, determine what shortcut should be used and write a plan on how you would prove the triangles congruent.

1. Given: $\overline{A B} \| \overline{C D}$ and $\overline{A B} \cong \overline{C D}$

Prove: $\triangle A B C \cong \triangle C D A$

PLAN:

A

2. Given: $\overline{J N}$ and $\overline{K M}$ bisect each other at L Prove: $\Delta J K L \cong \triangle N M L$

PLAN:

3. Given: $\angle 1 \cong \angle 2, \overline{B C} \cong \overline{D C}$

Prove: $\triangle A B C \cong \triangle A D C$

PLAN:

4. Given: $\overline{G H} \perp \overline{H K}, \overline{J K} \perp \overline{K H}, \overline{G K} \cong \overline{J H}$ Prove: $\triangle G H K \cong \Delta J K H$

PLAN:

Name: \qquad
UNIT 3

Date: \qquad

LESSON 1

HOMEWORK

For numbers 1-6, identify the shortcut used to prove the triangles are congruent.

2)

3)

4)

5)

6)

For numbers 7-8, use the given information to determine the shortcut and write a plan for how you would prove the triangles are congruent
7. Given: $\overline{A E}$ bisects $\angle B C D$ and $\overline{B C} \cong \overline{D C}$ Prove: $\triangle C A B \cong \triangle C A D$

PLAN:

8. Given: $\angle K G E \cong \angle K E G, \overline{G L} \perp \overline{L D}, \overline{E D} \perp \overline{D L}$ and K is the midpoint of $\overline{L D}$
Prove: $\triangle K L G \cong \triangle K D E$

PLAN:

9. In the diagram below, $\overline{A E F B} \| \overline{C G D}$, and $\overline{G E}$ and $\overline{G F}$ are drawn.

If $\mathrm{m} \angle E F G=32^{\circ}$ and $\mathrm{m} \angle A E G=137^{\circ}$, what is $\mathrm{m} \angle E G F$?

1) 110
2) 430
3) 750
4) 1050
10. In the accompanying diagram, parallel lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are intersected by transversal at points G and H, respectively, $\mathrm{m} \angle A G H=x+15$, and $\mathrm{m} \angle G H D=2 x$.

Which equation can be used to find the value of x ?

1) $2 x=x+15$
2) $2 x+x+15=180$
3) $2 x+x+15=90$
4) $2 x(x+15)=0$

