Name:	
UNIT 3	

Date: ___

LESSON 1

AIM: WHAT'S THE CONCLUSION?

1. In $\triangle ABC$, $\overline{AB} \perp \overline{BC}$.

What can you conclude?

STATEMENT	REASON

2. $\overline{AB} \perp \overline{BC}$ and $\overline{LM} \perp \overline{MN}$

What can you conclude?

STATEMENT	REASON

3. Given quadrilateral ABCD,

What can you conclude?

STATEMENT	REASON

4. In $\triangle DEF$, $\overline{DE} \equiv \overline{DF}$.

D F

What can you conclude?	
------------------------	--

STATEMENT	REASON

5. In $\triangle DEF$, $\measuredangle E \cong \measuredangle F$

STATEMENT	REASON

6. *M* is the midpoint of \overline{AMB} .

What can you conclude?

STATEMENT	REASON

7. \overline{AB} and \overline{CD} intersect at *E*.

 What can you conclude?

STATEMENT	REASON

STATEMENT	REASON

9. PQ and AB bisect each other at F. What can you conclude?

STATEMENT	REASON

10. CD bisects AB at E.

What can you conclude?	
STATEMENT	REASON

11. In $\triangle ABC$, \overline{CD} is the perpendicular bisector of \overline{AB} ,

What can you conclude?

STATEMENT	REASON

SUMMARY:

- The ______ provides information for us to mark on a diagram.
 - Congruent sides = Tick Marks
 - Congruent Angles = Arcs
 - Perpendicular Lines = Right Angles
- A ______identifies a property regarding two figures.
- The ______ explains *why* the statement is true based on the ______

information.

- VISUAL FREEBIES: Properties that do not need to be "given" in order for us to identify.
 - _____- Look for the _____!
 - The side shared by two figures. Use

highlighters to see overlap!