UNIT 2 STUDY SHEET – RIGID MOTIONS

TOPIC #1: VOCABULARY

WORD	DEFINITION	
CONGRUENCE	Same size, same shape	
CORRESPONDENCE	A word we use to describe sides/angles that map onto each other from a pre-image to an image	
BASIC RIGID MOTION	A transformation that produces congruent figures	
PRE-IMAGE	The original image	
IMAGE	Where you end up (The one with the primes)	
REGULAR POLYGON	A 2D shape with all congruent sides and angles	
ORIENTATION	Clockwise or Counterclockwise (follow the letters!)	

TOPIC #2: BASIC RIGID MOTIONS

Object Translate	We <u>TRANSLATE</u> along VECTORS (UP, DOWN, LEFT or RIGHT)	(same orientation)
Reflect	We <u>REFLECT</u> over LINES	(opposite orientation)
Rotate	We <u>ROTATE</u> around POINTS by a certain number of DEGREES in either a CLOCKWISE or COUNTER-CLOCKWISE direction	(same orientation)

NAME OF CONSTRUCTION	STEPS TO COMPLETE CONSTRUCTION	EXAMPLE
LINE OF REFLECTION	 Using your straight edge, connect two corresponding points Construct a perpendicular bisector 	E F Line of Reflection
REFLECTION OVER A LINE	 From point A, extend your compass slightly below the line of reflection. Make a semi-circle. Mark two points of intersection. From those points, construct a perpendicular bisector Mark the midpoint Measure the distance between the midpoint and the original point A Mark that distance on the other side of the perpendicular bisector Repeat for all other points (B and C) 	A decessor B
TRANSLATION	 Expand compass length of vector From each vertex, draw an arc that length. Place your compass on the end of the vector and extend the width to one of the vertices Without changing the width, move the needle to the arrow of the vector and make an arc that intersects with the original arc. Repeat this process for all vertices and connect. 	A' B' C' F
CENTER OF ROTATION	 Connect two corresponding points Make a perpendicular bisector Connect another pair of corresponding points Make a perpendicular bisector Mark the point of intersection, this is your center of rotation 	C D D

ROTATION THROUGH A POINT 180°	 Extend a line through A and the center of rotation P Measure the distance between PA Mark that distance on the opposite side of the line. Label A' Repeat process for B and C Connect A'B'C' 	
-------------------------------	--	--

TOPIC #4: SYMMETRY

TYPE OF SYMMETRY	CHARACTERISTICS	EXAMPLE	NON-EXAMPLE
LINE (REFLECTIONAL)	When you can divide a shape in half and have two mirror images		T.
ROTATIONAL $\frac{360}{n}$ $n = \#of \ sides \ in \ a$ $regular \ polygon$	When you can rotate a figure a certain number of degrees so the image looks like the original figure		
POINT	When you can turn something upside down and it looks the same (180° rotation)	•	

TOPIC #5: CONGRUENCE AND CORRESPONDENCE

MATCH THE ORDER OF THE CONGRUENCE STATEMENT! $\triangle ABC \cong \triangle DEF$

CORRESPONDING ANGLES	CORRESPONDING SIDES
$< A \cong < D$	$AB \cong DE$
$< B \cong < E$	$BC \cong EF$
$< C \cong < F$	AC = DF

CONGRUENCE STATEMENT: Why are $\triangle ABC$ and $\triangle DEF$ congruent?

 $\Delta ABC \cong \Delta DEF$ because a <u>(rotation/reflection/translation)</u> is a rigid motion which preserves distance and angle measure."

↑ *MEMORIZE THIS*! ↑