\qquad
\qquad

LESSON \#9: THE REMAINDER THEOREM \& FINDING A REMAINDER ON A GRAPH

Do Now: Consider the polynomial function $g(x)=x^{3}-3 x^{2}+6 x+8$.
a. Divide \boldsymbol{g} by $\boldsymbol{x}+\mathbf{1}$.
b. Find $g(-1)$.

The remainder found after dividing P by $x-a$ will be the same value as $P(a)$

$$
\text { If } p(a)=0 \text {, then }(x-a) \text { is a factor }
$$

What do we suspect about the connection between the remainder from dividing a polynomial P by $x-a$ and the value of $P(a)$?

1) Consider the polynomial: $\boldsymbol{P}(x)=x^{4}+3 x^{3}-28 x^{2}-36 x+144$. Is $x+3$ one of the factors
of \boldsymbol{P} ?
2) When $x^{3}+k x^{2}-4 x+2$ is divided by $x+2$, the remainder is 26 . Find k.
3) The graph of $p(x)$ is show in the accompanting diagram. What is the remiander when $p(x)$ is divided by $x+4$?
4) $x-4$
5) -4
6) 0
7) 4

8) The graph of a polynomial function is illustrated below. What is the remainder when $\mathrm{p}(\mathrm{x})$ is divided by ($\mathrm{x}-2$) ?

9) Consider the polynomial function: $P(x)=x^{3}-8 x^{2}-29 x+180$. If $P(9)=0$, find the remaining two factors of P.
10) If $p(a)$ is the remainder when $x^{3}+3 x^{2}-18 x-40$ is divided by $x-a$, for which value of a would $p(a)=0$?
(A) 2
(B) -2
(C) 3
(D) -3

Practice:

7) Use the Remainder Theorem to find the remainder for the following division.
$\left(k^{3}-k^{2}-k-2\right) \div(k-2)$
8) The graph of a polynomial function, $M(x)$, is illustrated below. What is the remainder when $M(x)$ is divided by $x+1$?

9) Find a such that $2 x+5$ will be a factor of $4 x^{3}+8 x^{2}+a x+30$.
10) Determine if $x-5$ is a factor of $2 x^{3}-4 x^{2}-7 x-10$. Explain your answer.
\qquad

LAB \#8

1) Use the Remainder Theorem to find the remainder for the following division.

$$
\left(x^{2}-4 x+1\right) \div(x-3)
$$

2) Is $x-5$ a factor of the function $f(x)=x^{3}+x^{2}-27 x-15$? Explain your answer.
3) Is $x+1$ a factor of the function $f(x)=2 x^{5}-4 x^{4}+9 x^{3}-x+13$? Explain your answer.
4) Write a polynomial function, $p(x)$ in standard form, whose zeros are $\mathbf{- 1 , 2}$, and 7 .
5) The graph to the right is of a third degree polynomial function \boldsymbol{f}.
a. State the zeros of \boldsymbol{f}.
b. Write a formula (equation) for \boldsymbol{f} in factored form using \boldsymbol{c} for the constant.

6) Find the value of \boldsymbol{k} so that $\left(\boldsymbol{x}^{\mathbf{3}}-\boldsymbol{k} \boldsymbol{x}^{2}+\mathbf{2}\right) \div(\boldsymbol{x}-\mathbf{1})$ has remainder 8 .
7) The graph of the quadratic function, $f(x)$, is shown below. What is the remainder when $f(x)$ is divided by $x-2$?
a. -5
b. 3
c. -3
d. 5

8) Find the roots of $x^{2}-6 x+1=0$ in simplest radical form.
9) Use your calculator to answer this question!

The expression $\frac{4 x^{3}+5 x+10}{2 x+3}$ is equivalent to
(1) $2 x^{2}+3 x-7+\frac{31}{2 x+3}$
(3) $2 x^{2}+2.5 x+5+\frac{15}{2 x+3}$
(2) $2 x^{2}-3 x+7-\frac{11}{2 x+3}$
(4) $2 x^{2}-2.5 x-5-\frac{20}{2 x+3}$

