Name:

CC ALGEBRA 2

Date: _____ TROICI

LESSON #9: THE REMAINDER THEOREM & FINDING A REMAINDER ON A GRAPH

Do Now: Consider the polynomial function $g(x) = x^3 - 3x^2 + 6x + 8$.

a. Divide g by x + 1.

b. Find g(-1).

The remainder found after dividing *P* by x - a will be the same value as P(a)

If p(a) = 0, then (x - a) is a factor

What do we suspect about the connection between the remainder from dividing a polynomial *P* by x-a and the value of P(a)?

1) Consider the polynomial: $P(x) = x^4 + 3x^3 - 28x^2 - 36x + 144$. Is x + 3 one of the factors of P?

2) When $x^3 + kx^2 - 4x + 2$ is divided by x + 2, the remainder is 26. Find k.

- 3) The graph of p(x) is show in the accompanting diagram. What is the remiander when p(x) is divided by x + 4?
 - 1) x-4
 - 2) -4
 - 3) 0
 - 4) 4

(A) 2

4) The graph of a polynomial function is illustrated below. What is the remainder when p(x) is divided by (x - 2)?

5) Consider the polynomial function: $P(x) = x^3 - 8x^2 - 29x + 180$. If P(9) = 0, find the remaining two factors of *P*.

6) If p(a) is the remainder when $x^3 + 3x^2 - 18x - 40$ is divided by x - a, for which value of a would p(a) = 0?

(B) -2	(C) 3	(D) -3
(2) =	(0) 3	(2) 3

Practice:

7) Use the Remainder Theorem to find the remainder for the following division.

 $(k^3 - k^2 - k - 2) \div (k - 2)$

8) The graph of a polynomial function, M(x), is illustrated below. What is the remainder when M(x) is divided by x+1?

9) Find *a* such that 2x+5 will be a factor of $4x^3+8x^2+ax+30$.

10) Determine if x - 5 is a factor of $2x^3 - 4x^2 - 7x - 10$. Explain your answer.

Name: _____

CC ALGEBRA 2

Date: _____ TROICI

LAB #8

1) Use the Remainder Theorem to find the remainder for the following division.

$$(x^2-4x+1)\div(x-3)$$

- 2) Is x 5 a factor of the function $f(x) = x^3 + x^2 27x 15$? Explain your answer.
- 3) Is x + 1 a factor of the function $f(x) = 2x^5 4x^4 + 9x^3 x + 13$? Explain your answer.
- 4) Write a polynomial function, p(x) in **<u>standard form</u>**, whose zeros are -1, 2, and 7.

- 5) The graph to the right is of a third degree polynomial function f.
 - a. State the zeros of **f**.
 - b. Write a formula (equation) for *f* in <u>factored form</u> using *c* for the constant.

6) Find the value of k so that $(x^3 - kx^2 + 2) \div (x - 1)$ has remainder 8.

- 7) The graph of the quadratic function, f(x), is shown below. What is the remainder when f(x) is divided by x 2?
 - a. -5
 - b. 3
 - c. -3
 - d. 5

8) Find the roots of $x^2 - 6x + 1 = 0$ in simplest radical form.

9) Use your calculator to answer this question!

The expression
$$\frac{4x^3 + 5x + 10}{2x + 3}$$
 is equivalent to
(1) $2x^2 + 3x - 7 + \frac{31}{2x + 3}$ (3) $2x^2 + 2.5x + 5 + \frac{15}{2x + 3}$
(2) $2x^2 - 3x + 7 - \frac{11}{2x + 3}$ (4) $2x^2 - 2.5x - 5 - \frac{20}{2x + 3}$