UNIT 1

LESSON 7

AIM: HOW DO WE COMPLETE LONG DIVISION WITH REMAINDERS?

Do Now:

- a) Use long division: $x+3\sqrt{x^2+7x+12}$ b) Use long division to solve: $12\sqrt{265}$

1. Find the quotient of $x+2\sqrt{2x^2+6x+5}$

2. Find the quotient of $\frac{x^3 - x^2 + 3x - 1}{x + 3}$

3. Is x-4 a factor of $x^2 + 3x - 28$?

4. Is 2x-5 a factor of $4x^3+5x-8$? We can't factor it, so we must use long division.

- 5. Consider the polynomial function $f(x) = 3x^2 + 8x 4$.
- a. Divide f by x 2.

b. Find f(2).

If the remainder is 0, the divisor _____ a factor of the dividend.

If there IS a remainder, the divisor _____ a factor of the dividend.

Name:	
CC ALGEBRA 2	

Date: _____

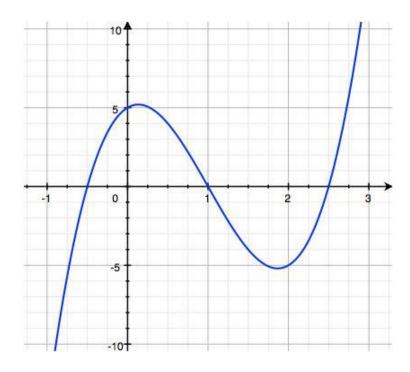
TROICI

1. Express the quotient as a polynomial with a remainder as a rational expression $\frac{x^2 + 4x + 10}{x - 8}$

2. The expression $\frac{x^3 + 2x^2 + x + 6}{x + 2}$ is equivalent to

(1)
$$x^2 + 3$$

(3)
$$2x^2 + x + 6$$


(2)
$$x^2 + 1 + \frac{4}{x+2}$$

(1)
$$x^2 + 3$$
 (2) $2x^2 + x + 6$ (2) $x^2 + 1 + \frac{4}{x + 2}$ (4) $2x^2 + 1 + \frac{4}{x + 2}$

3. Is x-2 a factor of x^3-8 ? Show all work and explain your answer.

- 4. Based on the graph shown,
- a) State all the solutions of this equation

b) State all the <u>factors</u> of this equation

c) Write the <u>equation</u> in standard form.

5. Find question for even /odd functions.....Justify algebraically!!!