\qquad

AIM: HOW DO WE IDENTIFY A POLYNOMIAL’S MULTIPLICITY

Do Now: Given the following quadratic equations, answer the following questions:
I. $x^{2}-x-6=0$
II. $x^{2}-2 x+1=0$
a) What is the degree of each polynomial?
b) How many roots will you expect there to be?
c) What is the leading coefficient of the equations?
d) Find the roots of the quadratic equations algebraically and sketch on the same graph (below) without the use of a calculator.

WORD	DEFINITION
Multiplicity	

- When the multiplicity is EVEN, the graph will \qquad at the root.
- When the multiplicity is ODD, the graph will \qquad at the root.

PRACTICE:

For questions \#1-2,
a) Find the zeros of the following polynomial functions.
b) State their multiplicities
c) State the degree of the polynomial.
d) Write the equation in factored form.

3) State a polynomial that has the roots given $\{4,-5,0\}$ and 1 as the leading coefficient.
4) Suppose we know that the polynomial equation has three real solutions and that one of the factors of $4 x^{3}-12 x^{2}+3 x+5=0$ is $(x-1)$. Find all the solutions to the given equation.
5) Given the accompanying graph:
a) Find the degree of the equation.
b) Find the zeroes of the graph.
c) Identify the factors.

6) The following graph shows an eighth-degree polynomial. List the polynomial's zeroes with their multiplicities (even or odd).

Name:
CC ALGEBRA 2

Date:
TROICI

LAB \#4

For each of the following polynomial functions:
a. State the degree of the function
b. State all zeroes and their multiplicities
c. Sketch each graph.

1) $f(x)=-x^{3}$

2) $f(x)=x^{4}+x^{3}-4 x^{2}-4 x$

3) $f(x)=2 x^{3}-3 x^{2}$

4) $f(x)=x^{4}+x^{3}$

5) Find all zeroes of the following functions with their multiplicities and state the degree:

$f(x)=(x-4)(x+4)^{3}$	$f(x)=(x-3)(x+1)$
$f(x)=(x-1)^{2} \cdot(x+3)^{5}$	$f(x)=x(x-2)(x+1)$

6) Suppose one of the factors of $x^{3}-10 x^{2}+27 x-18$ is $(x-3)$, what are the other two factors?
7) Suppose we know that the polynomial equation has three real solutions and that one of the roots of $x^{3}+3 x^{2}-4 x-12=0$ is $\mathrm{x}=-3$. State all solutions.
8) Factor: $125 x^{3}-27$
9) Factor: $2 x^{2}-5 x-12$
10) Factor: $k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48$
