Name:

Date: _____

UNIT 2

REVIEW

REVIEW FOR TEST#2 – RIGID MOTIONS

1. What is <i>line</i> symmetry?		
True or False: Orientation is preserved under line symmetry?		
2. What is rotational symmetry?		
True or False: Orientation is preserved under rational symmetry?		
3. What is <i>point</i> symmetry?		
True or False: Orientation is preserved under point symmetry?		
4. Which letter has both point and line symmetry of the symmet	netry? 5. Which letter has point symmetry but <i>not</i> line symmetry?	
(1) Z (2) T (3) C (4) H	(1) H (2) S (3) T (4) X	
 Which of the following will produce the sare result as a rotation of 270° counterclockw 	Ime7. Which of the following transformations produces the same result as a reflection over the x-axis followed by a reflection over the y-axis?	
1) A reflection over a vertical line	1) A reflection in the line $y = y$	
2) A reflection over a horizontal line	2) A reflection in the line $y = -x$.	
3) A translation to the left and down.	3) A rotation in the origin of -90 ^o .	
4) A rotation of 90 ^o clockwise.	4) A rotation in the origin of 180 ^o .	
8. In the accompanying figure, p and q are lin ABCDEF intersecting at point O, the cente image of each rigid motion:	nes of symmetry for regular hexagon r of the hexagon. Determine the	

- a) Reflect point A over line *q* = _____ b) Reflec
- b) Reflect (\overline{CB}) over line p=_____

- c) Reflect point D over line p =_____ d) Reflect \overline{AF} over line q then
 - over line *p* = _____
- 9. Determine the images of the following transformations in this regular decagon.
- a) How many degrees are in a minimum rotation to map the decagon onto itself?
- b) How many degrees are between point A and point G in a counter clockwise direction?
- b) How many degrees are between point C and point E in a counter clockwise direction?

10. Which expression best describes the transformation shown in the diagram below?

- 1) Orientation is preserved; reflection
- 2) Orientation is not preserved; reflection
- 3) Orientation is preserved; translation
- 4) Orientation is not preserved; translation
- 11. On the set of axes below, rectangle *ABCD* can be proven congruent to rectangle *KLMN* using which transformation?
- 1) rotation
- 2) translation
- 3) reflection over the *x*-axis
- 4) reflection over the y-axis
- 12. $\Delta A''B''C''$ is the image of ΔABC , as shown in the graph at the right. Which statement represents the sequence of transformations in this situation?
- 1) A reflection over the x-axis followed by a translation of left 5 units
- 2) A translation of 5 units down followed by a reflection over the x-axis
- 3) A reflection over the x-axis followed by a translation of right 5 units
- 4) A translation of 5 units right followed by a reflection over the x-axis
- 13. On the set of axes below, Geoff drew rectangle *ABCD*. He will transform the rectangle by using the translation of right two units, up one unit followed by a reflection over the *x*-axis. What will be the area of the rectangle after these transformations?
- 1) exactly 28 square units
- 2) less than 28 square units
- 3) greater than 28 square units
- 4) It cannot be determined from the information given

14. In the diagram below, $\triangle ABC \cong \triangle DEF$. Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

- 1) a reflection over the *x*-axis followed by a translation
- 2) a rotation of 180° about the origin followed by a translation
- 3) a reflection over the *y*-axis followed by a translation
- 4) a counterclockwise rotation of 90° about the origin followed by a translation

15. As shown in the graph below, the quadrilateral is a rectangle. Which transformation would not map the		
rectangle onto itself?		
1) a reflection over the <i>x</i> -axis		
2) a reflection over the line $x = 4$	<	
3) a rotation of 180° about the origin		
4) a rotation of 180° about the point $(4, 0)$	·····	
16. Which of the following descriptions pertaining to the graph at the right is A' A' A		
true?	B' ⁴	
(A = A = B = C)	3-B 2	
1) $\Delta A B C$ is a translation of ΔABC .	$C' A'' C \to x$	
2) $\Delta A^{"}B^{"}C^{"}$ is a translation of $\Delta A^{'}B^{'}C^{'}$.	-1	
3) $\Delta A "B"C"$ is a dilation in the origin of scale factor 2 of ΔABC	-3	
4) $\Delta A'B'C'$ is a translation of ΔABC	C ^m -5 MathBits.com	
17. Right triangle ABC is shown in the graph below. After a reflection over the y-axis, the image of ΔABC is		
$\Delta^{A \ B \ C}$. Which statement is <i>not</i> true?		
1) $\overline{BC} \cong \overline{B'C'}$		
2) $\overline{A'B'} + \overline{B'C'}$	в	
3) $AB = A'B'$	<>X	
4) $\overline{AC} \parallel \overline{A'C'}$		
19. Transperid <i>BCTU</i> is drawn below with $\overline{p_{V}}$, \overline{cr} , Line r is the normandiaular bisactor of $\overline{p_{0}}$ and $\overline{v_{0}}$ and line r is		
perpendicular to n though L . Which of the following rigid motion would carry <i>RSTU</i> onto itself?		
	1.0	
(1) a rotation about <i>L</i> by 180	s	
(2) a rotation about <i>L</i> by 90	m m	
(3) a reflection across line <i>n</i>		
(4) a reflection across line <i>m</i>		
Ű	Т	
19. In a rectangle shown below on the coordinate grid below, which of the following rigid motion would map the figure onto itself?		
(1) a reflection across the x-axis		
(2) a reflection across the <i>v</i> -axis		
(3) an 180 rotation about the origin	►x	
(4) an 90 rotation about the origin		

20. In the diagram below, rectangle *ABCD* has vertices whose coordinates are *A*(7, 1), *B*(9, 3), *C*(3, 9), and *D*(1, 7).

Which transformation will not carry the rectangle onto itself?

- 1) a reflection over the line y = x
- 2) a reflection over the line y = -x + 10
- 3) a rotation of 180° about the point (6, 6)
- 4) a rotation of 180° about the point (5,5)

21. Which transformation carries the parallelogram below onto itself?

- 1) a reflection over y = x
- 2) a reflection over y = -x
- a rotation of 90° counterclockwise about the origin
- 4) a rotation of 180° counterclockwise about the origin
- 22. The regular polygon below is rotated about its center.

- 1) 60°
- 2) 108°
- 3) 216°
- 4) 540°
- 23. Which rotation about its center will carry a regular decagon onto itself?
- 1) 54°
- 2) 162°
- 3) 198°
- 4) 252°

24. In regular hexagon ABCDEF shown below, \overline{AD} , $\overline{BE} \& \overline{CF}$ all intersect at G. When $\triangle ABG$ is reflected over \overline{BG} and the rotated 180° about point G, $\triangle ABG$ is mapped onto which triangle?

25. The graph below shows ΔLMN and its image, ΔRST . Describe a sequences of rigid motion(s) which would map ΔLMN onto ΔRST . Use the properties of rigid motion to explain your answer.

26. The graph below shows quadrilaterals *PART* and its image, *HGFE*. Describe a sequence of rigid motion which would map *PART* onto *HGFE*. Use the properties of rigid motion to explain your answer.

27. The graph below shows $\triangle ABC$ and its image, $\triangle A^{"}B^{"}C^{"}$. Describe a sequence of rigid motions, which would map $\triangle ABC$ onto $\triangle A^{"}B^{"}C^{"}$. Use the properties of rigid motion to explain your answer.

28. The graph below shows $\triangle ABC$ and its image, $\triangle DEF$. Describe a sequence of rigid motions, which would map $\triangle ABC$ onto $\triangle DEF$. Use the properties of rigid motion to explain your answer.

