$\qquad$

## REVIEW FOR TEST\#2 - RIGID MOTIONS

1. What is line symmetry? $\qquad$
True or False: Orientation is preserved under line symmetry?
2. What is rotational symmetry? $\qquad$

True or False: Orientation is preserved under rational symmetry?
3. What is point symmetry? $\qquad$

True or False: Orientation is preserved under point symmetry?
4. Which letter has both point and line symmetry?
(1) Z
(2) T
(3) C
(4) H
6. Which of the following will produce the same result as a rotation of $2700^{\circ}$ counterclockwise?

1) A reflection over a vertical line
2) A reflection over a horizontal line
3) A translation to the left and down.
4) A rotation of 90 clockwise.
5. Which letter has point symmetry but not line symmetry?
(1) H
(2) S
(3) T
(4) X
6. Which of the following transformations produces the same result as a reflection over the $x$-axis followed by a reflection over the $y$-axis?
1) A reflection in the line $y=x$.
2) A reflection in the line $y=-x$.
3) A rotation in the origin of -90․
4) A rotation in the origin of $180^{\circ}$.
8. In the accompanying figure, p and q are lines of symmetry for regular hexagon ABCDEF intersecting at point 0 , the center of the hexagon. Determine the image of each rigid motion:
a) Reflect point A over line $q=$
b) Reflect $(\overline{C B})$ over line $p=$
c) Reflect point $D$ over line $p=$ $\qquad$ d) Reflect $\overline{A F}$ over line $q$ then
 over line $p=$ $\qquad$
9. Determine the images of the following transformations in this regular decagon.
a) How many degrees are in a minimum rotation to map the decagon onto itself? $\qquad$
b) How many degrees are between point A and point G in a counter clockwise direction? $\qquad$
b) How many degrees are between point C and point E in a counter clockwise direction? $\qquad$

10. Which expression best describes the transformation shown in the diagram below?
1) Orientation is preserved; reflection
2) Orientation is not preserved; reflection
3) Orientation is preserved; translation
4) Orientation is not preserved; translation

11. On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle $K L M N$ using which transformation?
1) rotation
2) translation
3) reflection over the $x$-axis
4) reflection over the $y$-axis

12. $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is the image of $\triangle A B C$, as shown in the graph at the right. Which statement represents the sequence of transformations in this situation?
1) A reflection over the $x$-axis followed by a translation of left 5 units
2) A translation of 5 units down followed by a reflection over the $x$-axis
3) A reflection over the $x$-axis followed by a translation of right 5 units
4) A translation of 5 units right followed by a reflection over the $x$-axis

13. On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation of right two units, up one unit followed by a reflection over the $x$-axis. What will be the area of the rectangle after these transformations?
1) exactly 28 square units
2) less than 28 square units
3) greater than 28 square units
4) It cannot be determined from the information given

14. In the diagram below, $\triangle A B C \cong \triangle D E F$. Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$ ?
1) a reflection over the $x$-axis followed by a translation
2) a rotation of $180^{\circ}$ about the origin followed by a translation
3) a reflection over the $y$-axis followed by a translation
4) a counterclockwise rotation of $90^{\circ}$ about the origin followed by a translation

15. As shown in the graph below, the quadrilateral is a rectangle. Which transformation would not map the rectangle onto itself?
1) a reflection over the $x$-axis
2) a reflection over the line $x=4$
3) a rotation of $180^{\circ}$ about the origin
4) a rotation of $180^{\circ}$ about the point $(4,0)$

16. Which of the following descriptions pertaining to the graph at the right is true?
1) $\triangle A^{\prime \prime} B^{\prime \prime} C^{"}$ is a translation of $\triangle A B C$.
2) $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a translation of $\Delta A^{\prime} B^{\prime} C^{\prime}$.
3) $\triangle A^{\prime \prime} B^{\prime \prime} C^{"}$ is a dilation in the origin of scale factor 2 of $\triangle A B C$
4) $\triangle A^{\prime} B^{\prime} C^{\prime}$ is a translation of $\triangle A B C$

17. Right triangle $A B C$ is shown in the graph below. After a reflection over the $y$-axis, the image of $\triangle A B C$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which statement is not true?
1) $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$
2) $\overline{A^{\prime} B^{\prime}} \perp \overline{B^{\prime} C^{t}}$
3) $A B=A^{\prime} B^{t}$
4) $\overline{A C} \| \overline{A^{\prime} C^{\prime}}$

18. Trapezoid $R S T U$ is drawn below with $\overline{R U} \quad \overline{S T}$. Line $\boldsymbol{n}$ is the perpendicular bisector of $\overline{R S}$ and $\overline{U T}$ and line $\boldsymbol{m}$ is perpendicular to $n$ though $L$. Which of the following rigid motion would carry RSTU onto itself?
(1) a rotation about $L$ by 180
(2) a rotation about $L$ by 90
(3) a reflection across line $n$
(4) a reflection across line $\boldsymbol{m}$

19. In a rectangle shown below on the coordinate grid below, which of the following rigid motion would map the figure onto itself?
(1) a reflection across the $x$-axis
(2) a reflection across the $y$-axis
(3) an 180 rotation about the origin
(4) an 90 rotation about the origin

20. In the diagram below, rectangle $A B C D$ has vertices whose coordinates are $A(7,1), B(9,3), C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y=x$
2) a reflection over the line $y=-x+10$
3) a rotation of $180^{\circ}$ about the point $(6,6)$
4) a rotation of $180^{\circ}$ about the point $(5,5)$

21. Which transformation carries the parallelogram below onto itself?
1) a reflection over $y=x$
2) a reflection over $y=-x$
3) a rotation of $90^{\circ}$ counterclockwise about the origin
4) a rotation of $180^{\circ}$ counterclockwise about the origin

22. The regular polygon below is rotated about its center.


Which angle of rotation will carry the figure onto itself?

1) $60^{\circ}$
2) $108^{\circ}$
3) $216^{\circ}$
4) $540^{\circ}$
23. Which rotation about its center will carry a regular decagon onto itself?
1) $54^{\circ}$
2) $162^{\circ}$
3) $198^{\circ}$
4) $252^{\circ}$
24. In regular hexagon $A B C D E F$ shown below, $\overline{A D}, \overline{B E} \& \overline{C F}$ all intersect at G . When $\triangle A B G$ is reflected over $\overline{B G}$ and the rotated $180^{\circ}$ about point G , $\triangle A B G$ is mapped onto which triangle?

25. The graph below shows $\triangle L M N$ and its image, $\triangle R S T$. Describe a sequences of rigid motion(s) which would map $\triangle L M N$ onto $\triangle R S T$. Use the properties of rigid motion to explain your answer.

26. The graph below shows quadrilaterals PART and its image, $H$ GFE. Describe a sequence of rigid motion which would map PART onto HGFE. Use the properties of rigid motion to explain your answer.

27. The graph below shows $\triangle A B C$ and its image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Describe a sequence of rigid motions, which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{n}$. Use the properties of rigid motion to explain your answer.

28. The graph below shows $\triangle A B C$ and its image, $\triangle D E F$. Describe a sequence of rigid motions, which would map $\triangle A B C$ onto $\triangle D E F$. Use the properties of rigid motion to explain your answer.

