Name:	Date:

UNIT 4 LESSON 9

AIM: HOW DO WE IDENTIFY SEQUENCES OF RIGID MOTIONS ON THE COORDINATE PLANE?

Do Now: How does triangle ABC map onto triangle PQR?

^{*} A <u>sequence of rigid motions</u> is when it takes <u>more than one transformation</u> to map the pre-image onto the image! *

WHAT DO WE NEED TO SAY WHEN DISCUSSING TRANSFORMATIONS?

TYPE	KEY WORD / KEY FACTS TO DISCUSS WHEN DESCRIBING	DIAGRAM
1. TRANSLATION		2 2 X
2. REFLECTION		
3. ROTATION		2 v 2 x

1. In the diagram below, $\triangle A'B'C'$ is a transformation of $\triangle ABC$, and $\triangle A''B''C''$ is a transformation of $\triangle A'B'C'$.

The composite transformation of $\triangle ABC$ to $\triangle A''B''C''$ is an example of a

- 1) reflection followed by a rotation
- 2) reflection followed by a translation
- 3) translation followed by a rotation
- 4) translation followed by a reflection

2. In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

- 1) a reflection followed by a translation
- 2) a rotation followed by a translation
- 3) a translation followed by a reflection
- 4) a translation followed by a rotation

3. A sequence of transformations maps rectangle ABCD onto rectangle A"B"C"D", as shown in the diagram below.

Which sequence of transformations maps *ABCD* onto *A'B'C'D'* and then maps *A'B'C'D'* onto *A"B"C"D"*?

- 2) a reflection followed by a translation
- 3) a translation followed by a rotation
- 4) a translation followed by a reflection

4. Name the transformation or sequence of transformations that maps one figure onto the other. Then, complete the congruence statement.

a) Given: $\triangle ABC$ is the pre-image

A reflection over the _____ followed by A translation of ____ $\Delta {\rm ABC} \cong \Delta _$

b) Given: ΔFLT is the pre-image

A reflection over the _____ followed by $\mbox{A translation of } \mbox{} \mbox{} \Delta \mbox{FLT} \cong \Delta \mbox{} \$

5. In the diagram below, $\triangle ABC$ and $\triangle XYZ$ are graphed. Describe the transformation that maps $\triangle ABC$ onto $\triangle XYZ$. Use the properties of rigid motions to explain why $\triangle ABC \cong \triangle XYZ$.

6. Quadrilaterals \emph{BIKE} and \emph{GOLF} are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral *BIKE* onto quadrilateral *GOLF*.

7. Quadrilateral *MATH* and its image *M"A"T"H"* are graphed on the set of axes below. Describe a sequence of transformations that maps quadrilateral *MATH* onto quadrilateral *M"A"T"H"*. Use the properties of rigid motion to explain your answer.

8. Triangle ABC and its image XYZ are graphed on the set of axes below. Precisely describe a sequence of transformations that maps Triangle ABC onto XYZ.

Name:			

UNIT 4

LESSON 9 HOMEWORK

1. Triangle ABC and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?

- 1) a reflection over the *x*-axis followed by a reflection over the *y*-axis
- 2) a 180° rotation about the origin followed by a reflection over the line y = x
- 3) a 90° clockwise rotation about the origin followed by a reflection over the *y*-axis
- 4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

- 2. Which of the following descriptions pertaining to the graph below is true?
 - (1) $\Delta A"B"C"$ is a translation of ΔABC .
 - (2) $\Delta A"B"C"$ is a translation of $\Delta A'B'C'$.
 - (3) $\Delta A"B"C"$ is a dilation in the origin of scale factor 2 of ΔABC
 - (4) $\Delta A'B'C'$ is a translation of ΔABC

3. Describe a sequence of transformations that maps $\triangle ABC$ to $\triangle DFE$ as shown at the below.

4. Triangle ABC and its image A'B'C' are graphed on the set of axes below. Precisely describe a sequence of transformations that maps Triangle ABC onto A'B'C'.

5. The graph to the right shows $\triangle ABC$ and its image, $\triangle A"B"C"$.

Describe a sequence of rigid motions which would map $\triangle ABC$ onto $\triangle A"B"C"$.

