Name:	KLY	
UNIT 2	8	

Date: _____

AIM: HOW DO WE CONSTRUCT ROTATIONS OFF THE COORDINATE PLANE?

Do Now: In the diagram of $\triangle ABC$ below, \overline{BD} is drawn to side \overline{AC} .

If $m\angle A = 35$, $m\angle ABD = 25$, and $m\angle C = 60$, which type of triangle is $\triangle BCD$?

- (1) equilateral
- 2) scalene
- 3) obtuse
- 4) right

CONSTRUCTING ROTATIONS WITH ANGLES THAT ARE MULTIPLES OF 60

EXAMPLE #1: Using your compass and straightedge, construct a *hexagon* about point P with a radius of \overline{PB} .

IS ABC = AN'B'C'? EXPlain Yes! A rOTATION IS a rigid mution which preserves distance + & measure

ALL POSITIVE ANGLES ARE ROTATED COUNTER CLOCKWISE !

1. Using your compass and straightedge, construct the rotation of $\Delta ABC~180^{\circ}$ about point P.

2. Using your compass and straightedge, construct the rotation of ΔABC 180° about point P

IS DABC = DA'B'C'? Explain Yes! A rotation is a rigid motion which preserves distance + measure

PRACTICE:

3. Using your compass and straightedge, construct the rotation of ΔABC 120° counter clock-wise about point P

Name: _	Kell	
UNIT 2	160 8	

Date: _____

LESSON 7 HOMEWORK

1. Use your compass and straightedge rotate ΔQRS 120° counter clockwise about point P.

Is ΔQRS = ΔQ'R'S'? Explain Yes! A rotation is a rigid motion

which preserves & measure & distance

2. Use your compass and straightedge rotate ΔQRS 180° counter clockwise about point P.

Is ΔQRS = ΔQ'R'S'? Explain Yes! A rotation is a rigid motion which ipreserves distunce + 4 measure

4. In $\triangle ABC$ shown below, side \overline{AC} is extended to point D with $m\angle DAB = (180 - 3x)^\circ$, $m\angle B = (6x - 40)^\circ$, and $m\angle C = (x + 20)^{\circ}$.

5. Transversal \overrightarrow{EF} intersects \overrightarrow{AB} and \overrightarrow{CD} , as shown in the diagram below. Which statement could always be used to

X=20

(4) $\angle 4$ and $\angle 5$ are supplementary 4 same side interior