| Name: | KLY | | |--------|-----|--| | UNIT 2 | 8 | | Date: _____ ## AIM: HOW DO WE CONSTRUCT ROTATIONS OFF THE COORDINATE PLANE? Do Now: In the diagram of $\triangle ABC$ below, \overline{BD} is drawn to side \overline{AC} . If $m\angle A = 35$, $m\angle ABD = 25$, and $m\angle C = 60$, which type of triangle is $\triangle BCD$? - (1) equilateral - 2) scalene - 3) obtuse - 4) right ## CONSTRUCTING ROTATIONS WITH ANGLES THAT ARE MULTIPLES OF 60 **EXAMPLE #1:** Using your compass and straightedge, construct a *hexagon* about point P with a radius of \overline{PB} . IS ABC = AN'B'C'? EXPlain Yes! A rOTATION IS a rigid mution which preserves distance + & measure **ALL POSITIVE ANGLES ARE ROTATED COUNTER CLOCKWISE !** 1. Using your compass and straightedge, construct the rotation of $\Delta ABC~180^{\circ}$ about point P. 2. Using your compass and straightedge, construct the rotation of ΔABC 180° about point P IS DABC = DA'B'C'? Explain Yes! A rotation is a rigid motion which preserves distance + measure ## PRACTICE: 3. Using your compass and straightedge, construct the rotation of ΔABC 120° counter clock-wise about point P | Name: _ | Kell | | |---------|-------|--| | UNIT 2 | 160 8 | | Date: _____ LESSON 7 HOMEWORK 1. Use your compass and straightedge rotate ΔQRS 120° counter clockwise about point P. Is ΔQRS = ΔQ'R'S'? Explain Yes! A rotation is a rigid motion which preserves & measure & distance 2. Use your compass and straightedge rotate ΔQRS 180° counter clockwise about point P. Is ΔQRS = ΔQ'R'S'? Explain Yes! A rotation is a rigid motion which ipreserves distunce + 4 measure 4. In $\triangle ABC$ shown below, side \overline{AC} is extended to point D with $m\angle DAB = (180 - 3x)^\circ$, $m\angle B = (6x - 40)^\circ$, and $m\angle C = (x + 20)^{\circ}$. 5. Transversal \overrightarrow{EF} intersects \overrightarrow{AB} and \overrightarrow{CD} , as shown in the diagram below. Which statement could always be used to X=20 (4) $\angle 4$ and $\angle 5$ are supplementary 4 same side interior