AIM: HOW DO WE EVALUATE ROTATIONS ON THE COORDINATE PLANE?

Rotate \qquad ${ }^{\circ}$ CCW around \qquad Rule: $(x, y) \rightarrow(\quad, \quad)$		
Rotate \qquad ${ }^{\circ}$ CCW around \qquad Rule: $(x, y) \rightarrow(\quad, \quad)$		
Rotate \qquad ${ }^{\circ}$ CCW around \qquad Rule: $(x, y) \rightarrow(\quad, \quad)$		

1. Describe the transformation that maps $\triangle P Q R$ onto $\triangle P^{\prime} Q^{\prime} R^{\prime}$.

2. Describe the transformation that maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$.

3. Describe the transformation that maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$.

CONCLUSION:

The combination of a line reflection in the y-axis, followed by a line reflection in the x-axis, can be renamed as a single transformation of a rotation of 180° about the origin.

CONCLUSION:

\qquad
14. Describe transformation(s) that maps $P Q R S T$ onto $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$.

(1)
\qquad
\qquad
\qquad
(2)
\qquad
\qquad
15. Which transformation would not carry a square onto itself?

1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side
16. On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle $K L M N$ using which transformation?
1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

17. As shown in the graph below, the quadrilateral is a rectangle. Which transformation would not map the rectangle onto itself?
1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

\qquad
\qquad
5) The accompanying diagram shows the starting position of the spinner on a board game. How does this spinner appear after a 270° counterclockwise rotation about point P ?
6)

2)

3)

4)

2)

If $\overleftrightarrow{A B}$ was rotated 180° about the origin to form its image $\overleftrightarrow{A B}$, what type of lines would $\overleftrightarrow{A B}$ and $\overleftrightarrow{A B}$ create?
(A) Intersecting Lines
(B) Parallel Lines
© Perpendicular Lines
(D) Skew Lines

3)

Based on the figure below, describe how rectangle $A B C D$ can be carried onto its image $A B C D$.
(A) Reflection across the x -axis
(B) Reflection across the y-axis
(C) Rotation 90° clockwise about the origin
(D) Rotation 90° counterclockwise about the origin

4) As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$. Which statement justifies why $\overline{A B} \cong \overline{C B}$?

1) Distance is preserved under reflection.
2) Orientation is preserved under reflection.
3) Points on the line of reflection remain invariant.
4) Right angles remain congruent under reflection.

5) Which rotation would map $A B C D_{\text {onto }} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$
(1) $A B C D$ rotated CCW 360° around the origin.
(2) $A B C D$ rotated CCW 270° around the origin.
(3) $A B C D$ rotated CCW 180° around the origin.
(4) $A B C D$ rotated CCW 90° around the origin.

6) The graph below shows two congruent triangles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Which rigid motion would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y=x$

5) In the diagram of $\triangle A B C$ below, $B D$ is drawn to side $A C$. If $\mathrm{m} \angle A=35, \mathrm{~m} \angle A B D=25$, and $\mathrm{m} \angle C=60$, which type of triangle is $\triangle B C D$?
6) equilateral
7) scalene
8) obtuse
9) right

