Name: \qquad

UNIT 1B Date: \qquad

LESSON 14

AIM: WHAT IS THE RELATIONSHIP BETWEEN TRANSVERSALS AND PARALLEL LINES?

WORD	
Parallel Lines	
Angle Congruence	

TOPIC \#1: LINES AND TRANSVERALS

- A \qquad is a line that crosses
two (or more) lines.
- Transversals create \qquad angles, four at each intersection.
- \qquad angles fall between the two parallel lines
\bullet \qquad angles fall outside the two parallel lines.

TOPIC \#2: CORRESPONDING ANGLES

- Angles that are in the same location at each intersection are called \qquad
\qquad .
- LOOK FOR LETTER: \qquad
- Corresponding Angles Postulate: If parallel lines are cut by a transversal, then corresponding angles are
\qquad —.

- Angles that are on opposite sides of the transversal and on the interior of the lines are called
\qquad .
- LOOK FOR LETTER: \qquad
- Alternate Interior Angles Postulate: If parallel lines are cut by a transversal, then alternate interior angles are
\qquad —.

TOPIC \#4: ALTERNATE EXTERIOR ANGLES

- Angles that are on opposite sides of the transversal and on the exterior of the lines are called
\qquad .
- Alternate Exterior Angles Theorem: If parallel lines are cut by a transversal, then alternate exterior angles are
\qquad _.

TOPIC \#5: SAME SIDE INTERIOR ANGLES

- Angles that are on the same side of the transversal and on the interior of the lines are called
\qquad
- LOOK FOR LETTER: \qquad
- Same side interior angles are \qquad .

LESSON SUMMARY!

A Transversal is a line that crosses two or more lines.	
Angle Pairs Formed	Relation when lines are parallel
Corresponding	Congruent
Alternate Interior	Congruent
Alternate Exterior	Congruent
Same Side Interior	Supplementary

Practice: For examples \#'s 1-4, $\overrightarrow{A B} \square \overrightarrow{C D}$ and these lines are cut by transversal $\overrightarrow{E F}$.

1) If $m \angle 4=40^{\circ}$, what is the measure of $\angle 5$?
2) If $m \angle 2=145^{\circ}$, what is the measure of $\angle 7$?

3) If $m \angle 4=70^{\circ}$, what is the measure of $\angle 8$?
4) If $m \angle 3=130^{\circ}$, what is the $m \angle 5$?

5. In each exercise below, find the unknown (labeled) angles. Give reasons for your solutions.
a)

b)

c)
d)
$m \angle a=$ \qquad
$m \angle c=$ \qquad

6. If $m<6=2 x+20$, and $m<3=4 x+10$, find the following:
a) $m \angle 1$
b) $m \angle 7$

7. If $m \angle 1=x+1$ and $m \angle 6=2(x+1)$, what must $m \angle 5$ be so the lines m and n are parallel?

8. Are lines m and n parallel? Explain your answer!

9. $\overleftrightarrow{A B} \| \overrightarrow{C D}$ and these lines are cut by transversal $\overleftrightarrow{G H}$ at points E and F. If $m \angle C F E=3 y+20$ and $m \angle A E G=4 y-10$, find the value of y.

\qquad

3) If the measure of $\Varangle 3$ is 25°, find the following:
a) $\Varangle 2$
b) $\Varangle 6$
c) $\Varangle 8$
4) Solve for x

For Exercises 5-8, use the figure at the right. (HINT: Angles at a point sum to 360 degrees)
5) Find the value of x.
6) Find $m \angle 1$.

7) Find $m \angle 2$.
8) Find the value of y.

