UNIT 1A STUDY GUIDE – CONSTRUCTIONS

TOPIC #1: VOCABULARY

TERM	DIAGRAM/EXAMPLE	STATEMENT
Midpoint	A B	The POINT that divides a line segment in half.
Parallel		Two lines that never intersect.
Perpendicular Bisector	$\overset{\frown}{\longleftarrow}$	A line that divides a line segment in two and creates 90 degree angles .
Angle Bisector		A ray that divides an angle in half .
Altitude		A perpendicular line that stems from a vertex of a triangle to the opposite side.
Median		A line that connects the midpoint of a side to the opposite vertex.
Incenter		The point of concurrency between the three angle bisectors . Creates an inscribed circle .
Circumcenter	M M M M M M M M M M M M M M M M M M M	The point of concurrency between the three perpendicular bisectors . Creates a circumscribed circle .
Orthocenter	Epyright Cliastycalculation.com	The point of concurrency between the three altitudes .
Centroid		The point of concurrency between the three medians . Creates a 2:1 relationship .

TOPIC #2: CONSTRUCTIONS

WORD	STEPS	DIAGRAM
EQUILATERAL TRIANGLE	 Place your compass point on A and measure the distance to point B. Swing an arc of this size above (or below) the segment. Without changing the span on the compass, place the compass point on B and swing the same arc, intersecting with the first arc. Label the point of intersection as the third vertex of the equilateral triangle. 	A MathBits.com
INSCRIBED EQUILATERAL TRIANGLE	 Measure the length of the radius in your compass Make arcs around the circle the length of the radius Connect every other arc 	
INSCRIBED HEXAGON	 Measure the length of the radius in your compass Make arcs around the circle the length of the radius Connect every arc 	
ANGLE BISECTOR	 Draw an arc that hits both rays of the angle From the two points of intersection, make the X Connect the vertex through the X 	XX,
COPY AN ANGLE	 From B, draw an arc that hits both rays of the angle Draw the same arc from your new vertex (B') Measure the distance between the two points of intersection With that width, make an x on your new angle (B') 	$B \xrightarrow{A} C \xrightarrow{B'} C'$
PARALLEL LINES	Draw a transversal line from point P to go through the given line From the angle where the transversal intersects the line, draw an arc that will hit both rays Draw that same arc on point P Measure the distance between the two points of intersection on the angle formed by the original line. Make the X on the intersection from the arc that stems from P	PARALLEL LINES FORM CORRESPONDING ANGLES!

PERPENDICULAR LINES	 From one end point, extend your compass a little more than half way and make an arc From the opposite endpoint, repeat the process Connect the line through the two points of intersection Draw a diameter AB Make a perpendicular bisector on that diameter AB Where the perpendicular bisector intersects the circle, label it C and D. Connect A, B, C and D. 	A B WHEN IN DOUBT, DRAW THE TROUT!
RECTANGLE	 Construct a perpendicular bisector through A (use semi-circle first) Construct a perpendicular bisector through B (use semi-circle first) Pick a width for your compass, put an arc on each perpendicular bisector stemming from A and B, label the points of intersection C and D. Connect C and D 	
MEDIAN	 Construct a midpoint on one side using a perpendicular bisector Connect the midpoint to the opposite vertex 	A M B
ALTITUDE	 Extend the opposite side form the vertex you are making your altitude from. Draw a semi-circle from the vertex which your altitude will touch From those two points of intersection, make a perpendicular bisector (It should pass through the vertex) 	A D B

45-45-90 TRIANGLE	 Construct a 90 degree angle by making a perpendicular bisector Measure two congruent side lengths (B and C) from vertex A Connect points of intersection 	B 45 45 X A 9 C
30-60-90 TRIANGLE	 Construct an equilateral triangle Construct a perpendicular bisector 	A 30 BO B
90 DEGREE ANGLE	PERPENDICULAR BISECTOR!	A C B
45 DEGREE ANGLE	 Perpendicular bisector Angle Bisector 	
60 DEGREE ANGLE	EQUILATERAL TRIANGLE!	A P B Q
30 DEGREE ANGLE	 Equilateral triangle Angle bisector 	F B Q