\qquad
UNIT 1A
LESSON 6
AIM: HOW DO WE CONSTRUCT A PERPENDICULAR BISECTOR?
Do Now:

1. Ray $\overrightarrow{B C}$ bisects $\angle A B D$. If $m \angle A B D$ is 60°, Find the $m \angle A B C$ and $m \angle C B D$. Draw a diagram to assist in the problem.
2. How would you define a perpendicular bisector? Provide a sketch.

PERPENDICULAR BISECTORS!

STEPS	C ONSTRUCTION
1. Place the compass on one point of the line segment	
and adjust the compass to just over half the line	
length.	
2. Without adjusting the compass width, draw an arc	
on each side of the line.	
3. Repeat from the other endpoint of the line. YOU	
SHOULD SEE 2 POINTS OF INTERSECTION!	
4. Using your straight edge, connect a line through the	
two points of intersection	

CONCLUSIONS:

PRACTICE:

1. Using a compass and straightedge, construct the perpendicular bisector of $\overline{A B}$ shown below. Show all construction marks.

2. On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

3. Now that you are familiar with the construction of a perpendicular bisector, we must make one last observation. Using your compass, or a ruler, identify which pairs of segments are equal.

WHAT IF THE PERPENDICULAR BISECOTR IS TO BE CONSTRUCTED THROUGH A SPECIFIC POINT? *SEMI-CIRCLE!*

ON THE LINE	ABOVE THE LINE	
		A.
P	B	

4. Construct a perpendicular bisector to a line ℓ from a point A not on ℓ.
\qquad
5. Using a compass and straightedge, construct a line perpendicular to m through point P. [Leave all construction marks.]
6. Using a compass and straightedge, construct a line perpendicular to $A B$ through point P. [Leave all construction marks.]
7. Using a compass and straightedge, construct a line perpendicular to

$A B$ through point P. [Leave all construction marks.]

