ΝI	2	~	~	•	\sim	
IN	d	L	г	L	e	
•••	•		•	•	-	•

Date: _____

UNIT 1

REVIEW

UNIT 1 REVIEW: OPERATIONS OF POLYNOMIALS

1) Find the difference of $(x^3 + 5x - 4)$ and $(x^2 - 8x + 3)$.

2) Express $(3x - 2)(x^2 - 4x + 1)$ as a polynomial in simplest form.

3) Multiply (-2 x + 5) by its conjugate.

4) Simplfy: $(x - 6)^3$

5) Find the quotient using long division:

$$\frac{2x^3 + 9x^2 + 8x + 2}{2x + 1}$$

Factor COMPLETELY:

6) $x^4 + 13x^2 + 12$	7) 9c ² – 16
8) $3x^2 - 6x - 9$	9) $2x^2 - 5x - 12$

10) 3x ² - 27	11) $x^3 + 3x^2 - 4x - 12$
12) 125x ³ – 27	13) 1 + 64a ³
14) $x^2 - 20xy - 156y^2$	15) x ⁴ - 16

16) A polynomial function contains the factors x, x - 2, and x + 5. Which graph(s) below could represent the graph of this function?

17) Given the graph below:

a) State the zeros (roots) of the function: ______

b) State the factors of the function:

c) State the equation of the function: ______

18) Suppose one of the factors of $x^3 - 10x^2 + 27x - 18$ is (x-3), what are the other two *factors*?

19) Suppose we know that the polynomial equation has three real solutions and that one of the roots of $x^3 + 3x^2 - 4x - 12 = 0$ is x = -3. State all *solutions*.

(1) $(x + 4)(x^2 - 4x + 16)$ (2) $(x + 8)(x^2 - 8x + 64)$ (3) $(x - 4)(x^2 + 4x + 16)$ (4) $(x - 8)(x^2 + 8x + 64)$

21) Which polynomial represents $(x^2 + 2x - 1)(4x - 5)$? (Use your calculator to do this problem)

- (1) $4x^3 5x^2 6x + 5$
- (2) $4x^3 + 3x^2 14x 5$
- $(3) \qquad 4x^3 + 3x^2 14x + 5$
- (4) $4x^3 3x^2 14x + 5$

22) The completely factored form of $2d^4 + 6d^3 - 18d^2 - 54d$ is

(1) $2d(d^2 - 9)(d + 3)$ (3) $2d(d + 3)^2(d - 3)$ (2) $2d(d^2 + 9)(d + 3)$ (4) $2d(d - 3)^2(d + 3)$

21) Which factorization is *incorrect*?

- (1) $4k^2 49 = (2k + 7)(2k 7)$
- (2) $a^3 8b^3 = (a 2b)(a^2 + 2ab + 4b^2)$
- (3) $m^3 + 3m^2 4m + 12 = (m 2)^2(m + 3)$
- $(4) \ t^3 + 5t^2 + 6t + t^2 + 5t + 6 = (t+1)(t+2)(t+3)$