AIM: HOW DO WE DETERMINE THE DIFFERENCE BETWEEN FACTORS AND ROOTS?

Do Now:

- a) Using your graphing calculator, sketch $f(x) = x^2 x 20$ on the coordinate axis below.
- b) Factor: $f(x) = x^2 x 20$

- c) Identify the x-intercepts of the function based on the graph.
- d) What similarities do you notice?

ROOTS

X-intercepts have several words with the same meaning:

- When a function crosses the x-axis, the y-value
- When we set a polynomial equal to zero and factor, the answers we find are _____ or _____.
- Roots are always represented as

The _____ of a polynomial will always tell us how many roots there are - both real and non-real!

FACTORS

Factor:
$$(x-3)(x+2) = 0$$

Blobs = 0: $x-3 = 0$ or $x+2 = 0$
Solve: $x-3 = 0$ or $x+2 = 0$
 $x-3 = 0$ or $x+2 = 0$
 $x-3 = 0$ or $x+2 = 0$

This "or" is kind of important since x cannot be 3 AND -2 at the same time!

- break a polynomial into simpler terms such that when the terms are multiplied together, they equal the original polynomial.
- FACTORS are either represented using

- We set ______ equal to zero to find
- This process is called the

EXAMPLES:

1) Find all the factors of $f(x) = x^3 + 2x^2 - 5x - 6$ if (x-2) is a factor.

2) The function $P(x) = 2x^3 + 4x^2 - 14x + 8$ has a root of -4. Find **all** real solutions.

- 3) (Graphing Calculator Practice.) What is the quotient of $\frac{x^2+6x+9}{x+3}$?
 - 1) x + 3
 - 2) $x^2 + 2x + 3$
 - 3) x + 2x
 - 4) x + 5
- 4) For the polynomial function graphed to the right, identify:
- a) Its roots:

- b) Its factors:
- c) Its equation:

PARTNER PRACTICE:

1) What is the equation of this function?

2) What are one of the factors of the parabola on the right?

B)
$$x+3$$

C)
$$x+1$$

D)
$$x+4$$

- 3) In the equation, $y = 2x^4 + 3x^3 3x^2 + 2x 8$,
 - a) What is the degree of the equation?
 - b) What is the y-intercept?

4)
$$ax^3 + bx^2 + cx + d = 0$$

In the equation above, a, b, c, and d are constants. If the equation has roots -1, -3, and 5, which of the following is a factor of $ax^3 + bx^2 + cx + d$?

A)
$$x-1$$

C)
$$x-3$$

B)
$$x+1$$

D)
$$x + 5$$

_	١
٠,	١
_	,

x	f(x)
0	3
2	1
4	0
5	-2

The function f is defined by a polynomial. Some values of x and f(x) are shown in the table above. Which of the following must be a factor of f(x)?

A)
$$x-2$$

B)
$$x-3$$

C)
$$x-4$$

D)
$$x-5$$