Name: \qquad
UNIT 1

AIM: HOW DO WE DETERMINE THE DIFFERENCE BETWEEN FACTORS AND ROOTS?

Do Now:

a) Using your graphing calculator, sketch $f(x)=x^{2}-x-20$ on the coordinate axis below.
b) Factor: $f(x)=x^{2}-x-20$
c) Identify the x-intercepts of the function based on the graph.

Date: \qquad
LESSON 4

d) What similarities do you notice?

ROOTS	FACTORS
 - X-intercepts have several words with the same meaning: \qquad \qquad - When a function crosses the x-axis, the y-value is \qquad - - When we set a polynomial equal to zero and factor, the answers we find are \qquad or \qquad - - Roots are always represented as \qquad - The \qquad of a polynomial will always tell us how many roots there are - both real and non-real!	$x^{2}-x-6=0$ Factor: $\quad(x-3)(x+2)=0$ Blobs $=0: x-3=0$ or $x+2=0$ Sove: $\frac{+3+3}{x=3} \uparrow \frac{-2-2}{x=-2}$ This "or" is kind of important since x cannot be 3 AND -2 at the same time! \qquad break a polynomial into simpler terms such that when the terms are multiplied together, they equal the original polynomial. - FACTORS are either represented using \qquad or \qquad - We set \qquad equal to zero to find \qquad -. - This process is called the \qquad \qquad .

EXAMPLES:

1) Find all the factors of $f(x)=x^{3}+2 x^{2}-5 x-6$ if $(x-2)$ is a factor.
2) The function $P(x)=2 x^{3}+4 x^{2}-14 x+8$ has a root of -4 . Find all real solutions.
3) (Graphing Calculator Practice.) What is the quotient of $\frac{x^{2}+6 x+9}{x+3}$?
4) $x+3$
5) $x^{2}+2 x+3$
6) $x+2 x$
7) $x+5$
8) For the polynomial function graphed to the right, identify:
a) Its roots:

b) Its factors:
c) Its equation:

PARTNER PRACTICE:

1) What is the equation of this function?

2) What are one of the factors of the parabola on the right?
A) $x-5$
B) $x+3$
C) $x+1$
D) $x+4$

3) In the equation, $y=2 x^{4}+3 x^{3}-3 x^{2}+2 x-8$,
a) What is the degree of the equation?
b) What is the y-intercept?
4)

$$
a x^{3}+b x^{2}+c x+d=0
$$

In the equation above, a, b, c, and d are constants. If the equation has roots $-1,-3$, and 5 , which of the following is a factor of $a x^{3}+b x^{2}+c x+d$?
A) $x-1$
B) $x+1$
C) $x-3$
D) $x+5$
5)

x	$f(x)$
0	3
2	1
4	0
5	-2

The function f is defined by a polynomial. Some values of x and $f(x)$ are shown in the table above. Which of the following must be a factor of $f(x)$?
A) $x-2$
B) $x-3$
C) $x-4$
D) $x-5$

