UNIT 6 STUDY SHEET - TRIGONOMETRY

TOPIC \#1: PYTHAGOREAN THEOREM

$$
a^{2}+b^{2}=c^{2}
$$

Where the ' c ' value is ALWAYS the HYPOTENUSE (across from the right angle)!

HOW DO I KNOW WHEN TO USE IT?

- We use Pythagorean Theorem when we have 2 sides of a right triangle and are looking for the $3^{\text {rd }}$ side!
- You can NOT use Pythagorean Theorem to find angles!
- Pythagorean Theorem can $\underline{O N L Y}$ be used in right triangles.

EXAMPLE

HOW DO I KNOW WHEN TO USE IT?	
- We use Pythagorean Theorem when we have 2	
sides of a right triangle and are looking for the $3^{\text {rd }}$	
side!	
- You can NOT use Pythagorean Theorem to find	
angles!	
Pythagorean Theorem can $\underline{O N L Y}$ be used in right	
triangles.	

TOPIC \#3: SOHCAHTOA/ANGLE OF ELEVATION AND DEPRESSION
We use SOHCAH TOA to find missing sides and angles of RIGHT TRIANGLES.

$$
\sin (B)=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$\cos (B)=\frac{\text { adjacent }}{\text { hypotenuse }}$

$$
\tan (B)=\frac{\text { opposite }}{\text { adjacent }}
$$

HOW DO I KNOW WHEN TO USE IT?	EXAMPLE
TO FIND A MISSING SIDE: - If you are given one side and one angle and you are looking for another side of a right triangle, use SOHCAHTOA. - When you are finding a side, you cross multiply and solve for x .	www. mathwarehouse.com
TO FIND A MISSING ANGLE: - If you are given two sides of a right triangle and you are looking for an angle, use SOHCAHTOA. - WHEN YOU ARE FINDING AN ANGLE YOU HAVE TO US E $2^{N D}$ IN YOUR CALCULATOR! DO NOT CROSS MULTIPLY!	

Angle of Elevation	Angle of Depression
The angle of elevation always located INSIDE \& is measured from the BOTTOM of the triangle.	The angle of depression is always located OUTSIDE the triangle \& is measured from TOP of the triangle.

THE ANGLE OF ELEVATION IS ALWAYS EQUAL TO THE ANGLE OF DEPRESSION BECAUSE ALTERNATE INTERIOR ANGLES ARE CONGRUENT!

TOPIC\#5: LAW OF SINES

- Law of Sines is an alternative to SOHCAHTOA when you have a right triangle. $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
- The uppercase letters always represent ANGLES.
- The lowercase letters always represent SIDES.
- The uppercase letter will always correspond with the same lowercase letter directly across from it.

Law of Sines examples will typically look like this:

- Find all missing angles using linear pairs and angles in a triangle sum to 180°
- Find the REFLEXIVE side by using law of sines with the obtuse triangle first.
- Find the desired side (typically AB) using law of sines or SOHCAHTOA in the right triangle second.

TOPIC \#6: COFUNCTIONS
If A and B are complementary angles (angles that sum to 90 degrees),

$$
\begin{aligned}
& \qquad \begin{array}{l}
\sin \boldsymbol{A}=\boldsymbol{\operatorname { c o s }} \boldsymbol{B} \\
\boldsymbol{\operatorname { c o s }} \boldsymbol{A}=\sin \boldsymbol{B}
\end{array} \\
& \text { When } 0^{\circ}<\theta<90^{\circ}, \sin \left(90^{\circ}-\theta\right)=\cos \theta \text { and } \sin \theta=\cos \left(90^{\circ}-\theta\right)
\end{aligned}
$$

