Name: \qquad

GEOMETRY
 MIDTERM REVIEW HOMEWORK PACKET

The homework for each night from this packet is mixed review of all material we have covered so far this year. Show all work! Use old notes, videos and study sheets to help you! You will need a compass, ruler and graphing calculator!

CALENDAR

DATE	ASSIGNMENT	PAGES
$1 / 15 / 20$	Midterm Review HW \#1	$2-4$
$1 / 16 / 20$	Midterm Review HW \#2	$5-6$
$1 / 17 / 20$	Midterm Review HW \#3	$7-8$

Midterm Review HW \#1

1. Based on the construction below, which statement must be true?
1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

2. In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20, \mathrm{~m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$.
a. Find $m<Q P T$
b. Find $m<H Q P$
c. Find $m<Q P H$

(Not drawn to scale)
3. $\triangle D E G$ and $\triangle E G F$ are isosceles. $m \angle E D G=640$ Find $m \angle G E F$.

4. Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?
1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$
5. Segment $W X$ is the perpendicular bisector of $Y Z$ at E. Which pair of segments do not have to be congruent?
(1) $\overline{X E}, \overline{W E}$
(3) $\overline{Y W}, \overline{Z W}$
(2) $\overline{Y E}, \overline{Z E}$
(4) $\overline{Y X}, \overline{Z X}$
6. Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below. Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?
1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

7. Construct a line perpendicular to segment $A B$ that goes through point P.

8. Construct a perpendicular bisector to a line ℓ from a point A not on ℓ.
A.
9. Given: $\triangle A R T$, Using a compass and straightedge, construct the bisector of $\angle R A T$. [Leave all construction marks.]

10. Given: $\triangle A R T$, Construct: the perpendicular bisector of side $\overline{A R}$ [Leave all construction marks.]

11. Given: $\overline{A D} \perp \overline{B C}$ and $\overline{A D}$ bisects $\angle B A C$

Prove: $\angle C \cong \angle B$

STATEMENT	REASON

12. Given the diagram below, determine the value of x.

13. In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair. Using only the information given in the diagrams, which pair of triangles can not be proven congruent?

14. Which rigid motion will verify that $\triangle A B C$ is congruent to $\triangle D E F$ as shown at the below?

15. If $\triangle A B C \sim \triangle L M N$, which statement is not always true?
1) $\mathrm{m} \angle A \cong \mathrm{~m} \angle N$
2) $\mathbf{m} \angle B \cong \mathrm{~m} \angle M$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle L M N}=\frac{(A C)^{2}}{(L N)^{2}}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle L M N}=\frac{A B}{L M}$
15. Using the information given below, which set of triangles can not be proven similar?
A.

C.

B.

D.

16.

$$
\text { Given: } \begin{gathered}
\overline{A D} \text { bisects } \measuredangle B A C \\
\overline{A D} \perp \overline{B C}
\end{gathered}
$$

Prove: $\triangle A D B \cong \triangle A D C$
How would you prove that the triangles are congruent?
[1] Side-Angle-Side (SAS)
[2] Angle-Side-Angle (ASA)
[3] Side-Side-Side (SSS)
[4] Angle- Angle Side- (AAS)

18. In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}, \mathrm{~m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.. What is the value of x ?

19. In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$. If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?

20. In triangles $A B C$ and $D E F, A B=4, A C=5, D E=8, D F=10$, and $\angle A \cong \angle D$. Is $\triangle A B C \sim \triangle D E F$? Explain your answer. If the triangles are similar, write the similarity statement.
21. In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C. Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

22. Which rigid transformation will verify that $\triangle A B C$ is congruent to $\triangle D E F$, as shown below?
[1] reflection in the y-axis
[2] reflection in the x-axis
[3] reflection in the line $y=1$
[4] translation of down two units

Midterm Review HW \#3

23. Given: $\triangle A B C \sim \triangle D E C$, determine $A B$.

24. Given: $\overline{D C} \perp \overline{B C}, \overline{A B} \perp \overline{B C}$

Prove: $\triangle A B E \sim \triangle D C E$

REASON
25. $\triangle C A T$ and its image $\triangle D O G$, are graphed on the set of axes shown. Describe a single transformation, or sequence of transformations that map $\triangle C A T$ onto $\triangle D O G$.

26. $\triangle A B C$ and its image $\triangle P Q R$, are graphed on the set of axes shown. Describe a single transformation, or sequence of transformations that map $\triangle A B C$ onto. $\triangle P Q F$

