CC GEOMETRY Midterm Review January 2020

WHEN/WHERE: Tuesday, January	Time: in room
 BRING WITH YOU: Your graphing calculator Compass! Two pencils and two pens (black & blue only) As much mathematical knowledge as possible 	 REVIEW: Wednesday, 1/15 in class Thursday, 1/16 in class Friday, 1/17 in class
WHAT IT COUNTS FOR:	FORMAT:

- Does not count as part of your 2nd marking period grade
- Counts as 4% of your final average for the year.
- 10 Multiple-choice questions (2 points each)
- 5 Short-response, show all work (2 points each)
- 5 Short-response, show all work (4 points each)
- 2 Long-response, show all work questions (6 points each)

ΤΟΡΙϹ	THINGS TO STUDY	PAGE(S)
	Construct an Equilateral Triangle	
	Copy and Bisect an Angle	2
UNIT 1A: CONSTRUCTIONS	Construct a Perpendicular Bisector	2
	Points of Concurrencies	
	Solving for Unknown angles (vertical angles, linear pairs, angles at a point, etc.)	
	Angles in a triangle	
UNIT IB: UNKNOWN ANGLES	Isosceles triangles	2-3
	• Parallel lines and transversals (alternate interior angles, corresponding angles,	- 0
	alternate exterior angles, same side interior angles)	
	Exterior angle theorem	
	Rotations, reflections, translations	
	Symmetry- Reflectional, Rotational (Angles of Rotation)	
	Sequence of rigid motions	36
MOTIONS	Transformations on the coordinate plane	5 0
	Construct line of reflection	
	Congruence in terms of rigid motions	
	Congruence Criteria—SAS, ASA, SSS, SAA and HL,	
UNIT 3: TRIANGLE CONGRUENCE	• CPCTC	6-7
	Properties of quadrilaterals	
	Parallelogram proofs	8-10
UNIT 4. QUADRILATERALS		
	Scale drawings (Constructing Dilations)	
	Scale factors	
	Similarity Transformations	
UNIT 5: SIMILARITY	• Similarity Theorems (AA, SAS, SSS)	11-15
	Side Splitter	
	Dilating a line	
	Similarity proofs	

1. Based on the construction below, which statement must be true?

1)
$$m \angle ABD = \frac{1}{2} m \angle CBD$$

- 2) $m \angle ABD = m \angle CBD$
- 3) $m \angle ABD = m \angle ABC$
- 4) $m \angle CBD = \frac{1}{2} m \angle ABD$

Vertical Angles	Angle Sum of a Triangle	Angles on a Line	Parallel Lines cut by Transversal	Isosceles Triangle
Vertical Angles are 	Angles in a triangle add toº.	Angles on a line add toº.	Alternate Interior angles are	2 = 2 = angles.
			Corresponding angles are	

2. In the diagram below, $p \parallel s$. Determine the value of x.

3. Given $\triangle ABC$ with $m \angle B = 56^{\circ}$ and side \overline{AC} extended to *D*, as shown below. Which value of *x* makes $\overline{AB} \cong \overline{CB}$?

- 1) 59º
- 2) 62º
- 3) 118º
- 4) 121º

Exterior Angle Theorem

The measure of an *exterior angle* of a triangle is equal to the _____ of the measures of the two _____ interior angles of the triangle.

4. In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point *D*. If $\mathbf{m}\angle BCD = \mathbf{6x} + \mathbf{2}$, $\mathbf{m}\angle BAC = \mathbf{3x} + \mathbf{15}$, and $\mathbf{m}\angle ABC = \mathbf{2x} - \mathbf{1}$, what is the measure of $\angle ABC$? Explain your solution.

120

 $m \angle LKN = m \angle L + m \angle M$

Rigid Motions				
Preserve	and	Reflection	Rotation	Translation
	measure.			

5. The image of $\triangle DEF$ is $\triangle D'E'F$. Under which transformation will the triangles *not* be congruent?

1) a reflection through the origin

3) a dilation with a scale factor of 1 centered at (2, 3)

2) a reflection over the line y = x

4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

Horizontal Lines	Vertical Lines
Equation in the form = #	Equation in the form = #

6. Triangle *ABC* is graphed on the set of axes below. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a reflection over x = -1.

Explain why $\triangle ABC \cong \triangle A'B'C'$:

Describing Rigid Motions!				
Reflection needs	Rotation needs	Translation needs		
Line or point of reflection	Center	 A vector with distance and 		
	 Angle (#degrees) 	direction		
	Direction (counter-			
	clockwise is positive,			
	clockwise is negative)			

7. As graphed on the set of axes below, $\triangle A B'C'$ is the image of $\triangle ABC$ after a sequence of transformations. a) Determine and state the sequence of transformations.

b) Is $\triangle A B' C$ congruent to $\triangle ABC$? Use the properties of rigid motions to explain your answer.

c) Determine and state the sequence of transformations that mapped trapezoid ABCD to A'B'C'D'.

Using a compass and a straight edge, construct a line of reflection for the following figures:

Β.

Formula to determine the MINIMUM Rotation for a REGULAR polygon to map onto itself

minimum $\angle = \frac{360}{\# aidaa}$

side

Any _

____ of this angle will also map the polygon onto itself.

8. A regular hexagon is rotated *n* degrees about its center, carrying the hexagon onto itself. The value of *n* could be

- 1) 30°
- 2) 60°
- 3) 140°
- 4) 150°

9. A regular decagon is rotated *n* degrees about its center, carrying the decagon onto itself. The value of *n* could be

- 1) 10°
- 2) 150°
- 3) 225°
- 4) 252°

10. Which polygon has a minimum rotation of 72° about its center to carry the polygon onto itself?

- 1) square
- 2) pentagon
- 3) heptagon
- 4) octagon

TRIANGLE PROOFS

Identify the 5 Methods to Prove Triangles are Congruent				
	E A		D D D D D D D D D D D D D D D D D D D	

12. As shown in the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$. Which method could be used to prove $\triangle ABC \cong \triangle ADC$?

- 1) $ASA \cong ASA$
- 2) $AAS \cong AAS$
- 3) $SAS \cong SAS$
- 4) $SSS \cong SSS$

13. In the accompanying diagram, M is the midpoint of \overline{LO} and \overline{NP} . Which triangle congruency can be used to prove DLMN @ DOMP?

 (1) AAA @ AAA
 (3) ASA @ ASA

 (2) SSS @ SSS
 (4) SAS @ SAS

PROOF PRACTICE:

14. Given: $\overline{BD} \perp \overline{AC}$ D is the midpoint of \overline{AC} Prove: $\triangle ABD \cong \triangle CBD$

B

STATEMENT	REASON

QUADRILATERAL PROOFS

Under each diagram state the property of a parallelogram being illustrated by the labels of the diagram.

Parallelogram Properties				
	<i>≠ + ≠</i>			A 115 B

16. In the diagram of parallelogram ABCD shown below, \overline{DC} is extended to E, and \overline{BE} is drawn such that $\overline{BC} \cong \overline{BE}$. If $m \angle A = 112^{\circ}$. Determine the measure of $\angle EBC$.

17. The diagram below shows parallelogram ABCD with diagonal \overline{BD} , $m \angle C = 65^{\circ}$, and $m \angle ABD = 80^{\circ}$. Determine the following angle measures and explain each:

Angle Measure	Explanation
<i>m∠A</i> =	
$m \angle ADB =$	

R

F

18. The diagram below shows parallelogram *ABCD* with diagonal \overline{BD} , $m \angle A = 112^{\circ}$ and $m \angle BDC = 32^{\circ}$. What is the measure of $\angle CBD$? Explain any property used to reach your solution.

PROOF PRACTICE:

18. Given: Parallelogram *ABCD*, $\blacktriangleleft ABF \cong \blacktriangleleft CDE$

Prove: $AF \cong EC$

Rectangle has all the properties of a parallelogram PLUS:			
		Z A Y	
Rhombus ha	Rhombus has all the properties of a parallelogram PLUS:		
PO		D C	
	A	A	

17. Which of the following group of quadrilaterals have congruent diagonals?

- I. Parallelogram II. Rectangle III. Rhombus IV. Square
- 1) All of the above3) II and IV, only
- 2) II, III and IV 4) III and IV, only

18. In the diagram below, quadrilateral *ABCD* is a rhombus with diagonals \overline{AC} and \overline{BD} intersecting at *E*. AB = 3x, BC = 5x-2, $m \angle CDB = 6y+10$, and $m \angle DCA = 8y-4$

(a) Find x:

(b) Find y:

19. Use construction tools to create a scale drawing of $\triangle ABC$ with a scale factor of k = 2. Use B as the center of dilation. [Leave all construction marks].

Steps to Construct a Dilation

with k > 1

1. Use ruler to make a line from center through any vertex(A) and continue past the vertex.

2. Bullseye on center(B), measure to vertex (A), make a small arc.

3. Move bullseye to small arc at A, keep frozen and make 2nd small arc on extended online.

4. This will be A' for a dilation of 2. (Repeat small arcs if k > 2)

A dilation is a ______ transformation. A dilation preserves ______ measure.

3 ways to prove triangles are similar		les are similar	Similar triangles
AA ~	SAS ~	SSS ~	Corresponding Sides are
			Corresponding angles are

20. Using the information given below, which set of triangles, cannot be proven similar?

21. Based on the diagram shown, is $\Delta ABC \sim \Delta DEF$? Justify your answer.

11

D

4.5

5.5

E

6

b) Use the information from above and the diagram shown. Given WA = 3.4 cm, WT = 2.3 cm TH = 5.25 cm, find the length of CH to the nearest hundredth of a centimeter.

To find Center of Dilation	To Find Scale Factor	Describing the dilation
Connect 2 pairs of corresponding points and find the point of intersection.	k = (count lengths using only vertical/horizontal segments)	Need: Center Scale Factor

23. In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a SINGLE transformation.

- a) Precisely describe the single transformation that was performed.
- b) Explain why ΔJKL is similar to $\Delta J'K'L'$.

Dilating Lines and Segments			
If CENTER	<u>ON THE LINE</u>	If CENTER OFF THE LINE	
Keep SAME.	the	Keep the the same. (because image is parallel to pre-image) Multiply the by the scale factor (k).	

25. Line *a* is represented by the equation 5x + 2y = 14. Write equation in y = mx + b form.

c) Determine and state the equation of line *q*, the image of line *a*, after a dilation of scale factor 3 centered at the origin.

Triangle Side Splitter	Steps to Solve problems involving the bases (parallel sides)	
working with BASES(Sidesy	
	• Separate the Δ and the Δ • Create a proportion using sides	

26. In the diagram below of $\triangle ACD$, *E* is a point on \overline{AD} and *B* is a point on \overline{AC} , such that $\overline{EB} \parallel \overline{DC}$. If AE = 2, DE = 6, and EB = 9, find the length of \overline{CD} .

27. Solve for x:

