CC GEOMETRY Midterm Review January 2020

WHEN/WHERE: Tuesday, January	Time: \quad in room
BRING WITH YOU:	REVIEW:
- Your graphing calculator	- Wednesday, 1/15 in class
- Compass!	- Thursday, $1 / 16$ in class
- Two pencils and two pens (black \& blue only) - As much mathematical knowledge as possible	- Friday, 1/17 in class
WHAT IT COUNTS FOR:	FORMAT:
- Does not count as part of your $2^{\text {nd }}$ marking period grade - Counts as 4% of your final average for the year.	- 10 Multiple-choice questions (2 points each) - 5 Short-response, show all work (2 points each) - 5 Short-response, show all work (4 points each) - 2 Long-response, show all work questions (6 points each)

TOPIC	THINGS TO STUDY	PAGE(S)
UNIT 1A: CONSTRUCTIONS	- Construct an Equilateral Triangle - Copy and Bisect an Angle - Construct a Perpendicular Bisector - Points of Concurrencies	2
UNIT 1B: UNKNOWN ANGLES	- Solving for Unknown angles (vertical angles, linear pairs, angles at a point, etc.) - Angles in a triangle - Isosceles triangles - Parallel lines and transversals (alternate interior angles, corresponding angles, alternate exterior angles, same side interior angles) - Exterior angle theorem	2-3
UNIT 2: TRANSFORMATIONS/RIGID MOTIONS	- Rotations, reflections, translations - Symmetry-Reflectional, Rotational (Angles of Rotation) - Sequence of rigid motions - Transformations on the coordinate plane - Construct line of reflection - Congruence in terms of rigid motions	3--6
UNIT 3: TRIANGLE CONGRUENCE	- Congruence Criteria-SAS, ASA, SSS, SAA and HL, - CPCTC	6-7
UNIT 4: QUADRILATERALS	- Properties of quadrilaterals - Parallelogram proofs	8-10
UNIT 5: SIMILARITY	- Scale drawings (Constructing Dilations) - Scale factors - Similarity Transformations - Similarity Theorems (AA, SAS, SSS) - Side Splitter - Dilating a line - Similarity proofs	11-15

Identify the following Basic Constructions
(

1. Based on the construction below, which statement must be true?
1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

Vertical Angles	Angle Sum of a Triangle	Angles on a Line	Parallel Lines cut by Transversal	Isosceles Triangle
Vertical Angles are \qquad	Angles in a triangle add to \qquad ${ }^{\circ}$.	Angles on a line add to \qquad ${ }^{\circ}$.	Alternate Interior angles are \qquad Corresponding angles are \qquad	$\begin{aligned} & 2=\square \\ & 2=\square \quad \text { angles. } . \end{aligned}$

2. In the diagram below, $p \| s$. Determine the value of x .

3. Given $\triangle A B C$ with $m \angle B=56^{\circ}$ and side $\overline{A C}$ extended to D, as shown below. Which value of x makes $\overline{A B} \cong \overline{C B}$?
1) 590
2) 620
3) 1180
4) 1210

The measure of an exterior angle of a triangle is equal to the of the measures of the two \qquad interior angles of the triangle.

$$
m \angle L K N=m \angle L+m \angle M
$$

4. In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D. If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the measure of $\angle A B C$? Explain your solution.

Rigid Motions			
Preserve \quad Reflection	Rotation	Translation	

5. The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{\prime}$. Under which transformation will the triangles not be congruent?
1) a reflection through the origin
$3)$ a dilation with a scale factor of 1 centered at $(2,3)$
2) a reflection over the line $y=x$
3) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

Horizontal Lines	Vertical Lines
Equation in the form $\quad=\#$	Equation in the form ___ $=\#$

6. Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over $x=-1$.

Explain why $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$:

Describing Rigid Motions!		
Reflection needs - Line or point of reflection	Rotation needs - Center - Angle (\#degrees) - Direction (counterclockwise is positive, clockwise is negative)	Translation needs - A vector with distance and direction

7. As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations. a) Determine and state the sequence of transformations.

b) Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motions to explain your answer.
c) Determine and state the sequence of transformations that mapped trapezoid $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Using a compass and a straight edge, construct a line of reflection for the following figures:
A.

B.

$$
\text { minimum } \angle=\frac{360}{\# \text { sides }}
$$

Any of this angle will also map the polygon onto itself.
8. A regular hexagon is rotated n degrees about its center, carrying the hexagon onto itself. The value of n could be

1) 30°
2) 60°
3) 140°
4) 150°
9. A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be
1) 10°
2) 150°
3) 225°
4) 252°
10. Which polygon has a minimum rotation of 72° about its center to carry the polygon onto itself?
1) square
2) pentagon
3) heptagon
4) octagon

TRIANGLE PROOFS

Identify the 5 Methods to Prove Triangles are Congruent

(
12. As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$. Which method could be used to prove $\triangle A B C \cong \triangle A D C$?

1) $A S A \cong A S A$
2) $A A S \cong A A S$
3) $S A S \cong S A S$
4) $S S S \cong S S S$
13. In the accompanying diagram, M is the midpoint of $\overline{L O}$ and $\overline{N P}$. Which triangle congruency can be used to prove $L M N$ OMP?
(1) $A A A \quad A A A$
(3) $A S A$
ASA
(2) SSS SSS
(4) $S A S \quad S A S$

PROOF PRACTICE:

14. Given: $\overline{B D} \perp \overline{A C}$

D is the midpoint of $\overline{A C}$
Prove: $\triangle A B D \cong \triangle C B D$

STATEMENT

REASON
15. Given: $\overline{R T} \cong \overline{W Q}$ and $\overline{R T} \| \overline{W Q}$

Prove: $\overline{R W} \cong \overline{T Q}$

QUADRILATERAL PROOFS

Under each diagram state the property of a parallelogram being illustrated by the labels of the diagram.

Parallelogram Properties				

16. In the diagram of parallelogram $A B C D$ shown below, $\overline{D C}$ is extended to E, and $\overline{B E}$ is drawn such that $\overline{B C} \cong \overline{B E}$. If $m \angle A=112^{\circ}$. Determine the measure of $\angle E B C$.

17. The diagram below shows parallelogram $A B C D$ with diagonal $\overline{B D}, m \angle C=65^{\circ}$, and $m \angle A B D=80^{\circ}$. Determine the following angle measures and explain each:

Angle Measure	Explanation
$m \angle A=$	
$m \angle A D B=$	

18. The diagram below shows parallelogram $A B C D$ with diagonal $\overline{B D}, m \angle A=112^{\circ}$ and $m \angle B D C=32^{\circ}$. What is the measure of $\angle C B D$? Explain any property used to reach your solution.

PROOF PRACTICE:

18. Given: Parallelogram $A B C D, \Varangle A B F \cong \Varangle C D E$

Prove: $A F \cong E C$

Rectangle has all the properties of a parallelogram PLUS:
Rhombus has all the properties of a parallelogram PLUS:
17. Which of the following group of quadrilaterals have congruent diagonals?
I. Parallelogram
II. Rectangle
III. Rhombus
IV. Square

1) All of the above
2) II and IV, only
3) II, III and IV
4) III and IV, only
18. In the diagram below, quadrilateral $A B C D$ is a rhombus with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at $E . A B=3 x$, $B C=5 x-2, m \angle C D B=6 y+10$, and $m \angle D C A=8 y-4$
(a) Find x :
(b) Find y :

Dilations

19. Use construction tools to create a scale drawing of $\triangle A B C$ with a scale factor of $k=2$. Use B as the center of dilation. [Leave all construction marks].

Steps to Construct a Dilation with $k>1$

1. Use ruler to make a line from center through any vertex(A) and continue past the vertex.

2. Bullseye on center(B), measure to vertex (A) , make a small arc.
3. Move bullseye to small arc at A, keep frozen and make $2^{\text {nd }}$ small arc on extended online.
4. This will be A^{\prime} for a dilation of 2 . (Repeat small arcs if $k>2$)

A dilation is a \qquad transformation. A dilation preserves \qquad measure.

3 ways to prove triangles are similar Similar triangles

$A A \sim$	$S A S \sim$	$S S S \sim$	Corresponding Sides are Corresponding angles are______

20. Using the information given below, which set of triangles, cannot be proven similar?

(1)

(2)

(3)

(4)

21. Based on the diagram shown, is $\triangle A B C \sim \triangle D E F$? Justify your answer

22. In the accompanying diagram, $\overline{W A} \| \overline{C H}$ and $\overline{W H}$ and $\overline{A C}$ intersect at point T.
a) Prove that $\triangle W A T \sim \triangle H C T$.

b) Use the information from above and the diagram shown. Given $W A=3.4 \mathrm{~cm}, W T=2.3 \mathrm{~cm} T H=5.25 \mathrm{~cm}$, find the length of CH to the nearest hundredth of a centimeter.

To find Center of Dilation
To Find Scale Factor

$$
k=
$$

(count lengths using only vertical/horizontal segments)

Describing the dilation

Need:

Center Scale Factor
23. In the diagram below, $\triangle A^{\prime} B^{\prime} C^{n}$ is the image of $\triangle A B C$ after a SINGLE transformation.
a) Precisely describe the single transformation that was performed.
b) Explain why $\triangle J K L$ is similar to $\Delta J^{\prime} K^{\prime} L^{\prime}$.

24. In the diagram below, $\triangle A^{\prime} B^{\prime} C^{n}$ is the image of $\triangle A B C$ after a SINGLE transformation. Precisely describe the single transformation that was performed.

Dilating Lines and Segments

If CENTER ON THE LINE	If CENTER OFF THE LINE
Keep \qquad the	Keep the \qquad the same. (because image is parallel to pre-image)
	Multiply the \qquad \qquad by the scale factor (k).

25. Line a is represented by the equation $5 x+2 y=14$. Write equation in $y=m x+b$ form.
a) Determine and state the equation of line p, the image of line a, after a dilation of scale factor $\frac{1}{5}$ centered at the point $(4,-3)$. [The use of the set of axes below is optional.]
b) Explain your answer.

c) Determine and state the equation of line q, the image of line a, after a dilation of scale factor 3 centered at the origin.

Triangle Side Splitter
working with BASES($\left.\|_{\text {sides }}\right)$

Steps to Solve problems involving the bases (parallel sides)

- Separate the \qquad Δ and the \qquad Δ
- Create a proportion using \qquad sides

26. In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=2$, $D E=6$, and $E B=9$, find the length of $\overline{C D}$.

27. Solve for x :

